論文の概要: Mitigating Cache Noise in Test-Time Adaptation for Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2503.18334v1
- Date: Mon, 24 Mar 2025 04:32:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:36:17.516927
- Title: Mitigating Cache Noise in Test-Time Adaptation for Large Vision-Language Models
- Title(参考訳): 大規模視覚言語モデルにおけるテスト時間適応におけるキャッシュノイズの緩和
- Authors: Haotian Zhai, Xinyu Chen, Can Zhang, Tianming Sha, Ruirui Li,
- Abstract要約: 下流タスクにおける分散シフトに起因する性能劣化に対する解決策として,視覚言語モデルのテスト時適応(TTA)が注目されている。
我々は、包括的で信頼性の高いキャッシュ機構を導入し、キャッシュ、残留、ガウス(CRG)と呼ばれる新しいゼロショットTTA手法を提案する。
13のベンチマーク実験の結果、CRGは最先端のTTA法よりも優れており、例外的な堅牢性と適応性を示している。
- 参考スコア(独自算出の注目度): 13.157596316463621
- License:
- Abstract: Test-time adaptation (TTA) of visual language models has recently attracted significant attention as a solution to the performance degradation caused by distribution shifts in downstream tasks. However, existing cache-based TTA methods have certain limitations. They mainly rely on the accuracy of cached feature labels, and the presence of noisy pseudo-labels can cause these features to deviate from their true distribution. This makes cache retrieval methods based on similarity matching highly sensitive to outliers or extreme samples. Moreover, current methods lack effective mechanisms to model class distributions, which limits their ability to fully exploit the potential of cached information. To address these challenges, we introduce a comprehensive and reliable caching mechanism and propose a novel zero-shot TTA method called ``Cache, Residual, Gaussian" (CRG). This method not only employs learnable residual parameters to better align positive and negative visual prototypes with text prototypes, thereby optimizing the quality of cached features, but also incorporates Gaussian Discriminant Analysis (GDA) to dynamically model intra-class feature distributions, further mitigating the impact of noisy features. Experimental results on 13 benchmarks demonstrate that CRG outperforms state-of-the-art TTA methods, showcasing exceptional robustness and adaptability.
- Abstract(参考訳): 近年,下流タスクの分散シフトに起因する性能劣化に対する解決策として,視覚言語モデルのTTAが注目されている。
しかし、既存のキャッシュベースのTTAメソッドには一定の制限がある。
主にキャッシュされた特徴ラベルの精度に依存しており、ノイズの多い擬似ラベルの存在は、これらの特徴を真の分布から逸脱させる可能性がある。
これにより、外れ値や極端なサンプルに非常に敏感な類似性に基づいたキャッシュ検索手法が実現される。
さらに、現在のメソッドには、キャッシュされた情報の可能性を完全に活用する能力を制限する、クラス分散をモデル化するための効果的なメカニズムが欠けている。
これらの課題に対処するために、包括的で信頼性の高いキャッシュ機構を導入し、 ``Cache, Residual, Gaussian" (CRG) と呼ばれる新しいゼロショットTTA手法を提案する。
この手法では、学習可能な残差パラメータを用いて、正および負の視覚プロトタイプをテキストプロトタイプと整合させ、キャッシュされた特徴の質を最適化するだけでなく、ガウス判別分析(GDA)を用いてクラス内特徴分布を動的にモデル化し、さらにノイズのある特徴の影響を軽減する。
13のベンチマーク実験の結果、CRGは最先端のTTA法よりも優れており、例外的な堅牢性と適応性を示している。
関連論文リスト
- Noisy Test-Time Adaptation in Vision-Language Models [73.14136220844156]
テスト時間適応(TTA)は、テスト中のターゲットデータのみに依存することにより、ソースデータとターゲットデータの分散シフトに対処することを目的としている。
本稿では、ゼロショット方式で、テスト時にノイズのあるサンプルをターゲットとするデータにモデルを適応させることに焦点を当てたゼロショットノイズTTA(ZS-NTTA)を提案する。
本稿では, 冷凍機の出力を擬似ラベルとして利用し, ノイズ検出器の訓練を行う適応ノイズ検出器(AdaND)を提案する。
論文 参考訳(メタデータ) (2025-02-20T14:37:53Z) - Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
シークエンシャルレコメンデーション(SR)は、ユーザーが過去の行動に基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に把握できないことを発見した。
ファジィ情報処理理論に触発された本論文では,制限を克服し,ユーザの関心事の進化をよりよく捉えるために,ファジィなインタラクションシーケンスの組を導入する。
論文 参考訳(メタデータ) (2024-10-31T14:52:01Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
我々は、セレクタ分類器アーキテクチャを備えた新しいDNNトレーニングおよび推論フレームワークであるDiTMoSを紹介する。
弱いモデルの合成は高い多様性を示すことができ、それらの結合は精度の上限を大幅に高めることができる。
我々は,Nucleo STM32F767ZIボード上にDiTMoSをデプロイし,人間の活動認識,キーワードスポッティング,感情認識のための時系列データセットに基づいて評価する。
論文 参考訳(メタデータ) (2024-03-14T02:11:38Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
視覚言語基礎モデルは、画像とテキストのペアデータに拡張性があるため、多数の下流タスクで顕著な成功を収めている。
しかし、これらのモデルは、決定ショートカットの結果、きめ細かな画像分類などの下流タスクに適用した場合に重大な制限を呈する」。
論文 参考訳(メタデータ) (2024-03-01T09:01:53Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
モデル安定性を高めるために、小さなメモリバッファを組み込むことで、確立された自己学習フレームワークを強化する。
論文 参考訳(メタデータ) (2023-09-18T19:34:23Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Post-Processing Temporal Action Detection [134.26292288193298]
時間的行動検出(TAD)法は、通常、入力された可変長のビデオを固定長のスニペット表現シーケンスに変換する際に、前処理のステップを踏む。
この前処理ステップは、ビデオを時間的にダウンサンプリングし、推論の解像度を低減し、元の時間分解における検出性能を阻害する。
モデルの再設計や再学習を伴わない新しいモデル非依存のポストプロセッシング手法を提案する。
論文 参考訳(メタデータ) (2022-11-27T19:50:37Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
本稿では, 刈り込み時のバイアスの抑制に使用できる簡易な改良型クロスエントロピー損失関数である, 性能重み付き損失関数を提案する。
CelebA、Fitzpatrick17k、CIFAR-10データセットを用いた実験は、提案手法が単純で効果的なツールであることを実証している。
論文 参考訳(メタデータ) (2022-11-18T15:17:28Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
固定テストセットは、可能なデータバリエーションのごく一部しかキャプチャできないため、制限され、新しい過度なソリューションを生成する傾向にある、と私たちは主張する。
これらの欠点を克服するために、学習した特徴空間の構造から直接モデルのロバスト性を推定することを提案する。
論文 参考訳(メタデータ) (2021-06-23T10:52:29Z) - Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods [24.190587751595455]
弱監督は、基底的真理アノテーションに頼ることなく機械学習モデルを構築する一般的な方法である。
既存の手法では、雑音源をモデル化するために潜時変数推定を用いる。
弱監督に高度に適用可能な潜在変数モデルのクラスについて、モデルパラメータに対する閉形式解を見つけることができることを示す。
この洞察を使ってFlyingSquidを構築します。FlyingSquidは、以前の弱い監視アプローチよりも桁違いに高速に実行される弱い監視フレームワークです。
論文 参考訳(メタデータ) (2020-02-27T07:51:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。