Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise
- URL: http://arxiv.org/abs/2503.18391v1
- Date: Mon, 24 Mar 2025 07:03:23 GMT
- Title: Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise
- Authors: Siddharth Chandak, Shaan Ul Haque, Nicholas Bambos,
- Abstract summary: Two-time-scale Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization.<n>Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA.
- Score: 7.770605097524015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two-time-scale Stochastic Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization. Prior finite time analysis of such algorithms has focused on fixed point iterations with mappings contractive under Euclidean norm. Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA where the iterations have arbitrary norm contractive mappings and Markovian noise. We show that the mean square error decays at a rate of $O(1/n^{2/3})$ in the general case, and at a rate of $O(1/n)$ in a special case where the slower timescale is noiseless. Our analysis uses the generalized Moreau envelope to handle the arbitrary norm contractions and solutions of Poisson equation to deal with the Markovian noise. By analyzing the SSP Q-Learning algorithm, we give the first $O(1/n)$ bound for an algorithm for asynchronous control of MDPs under the average reward criterion. We also obtain a rate of $O(1/n)$ for Q-Learning with Polyak-averaging and provide an algorithm for learning Generalized Nash Equilibrium (GNE) for strongly monotone games which converges at a rate of $O(1/n^{2/3})$.
Related papers
- $O(1/k)$ Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation [0.0]
We obtain an improved gradient bound of $O (1/k)$ for nonlinear two-time-scale approximations.
Our result applies to algorithms such as descent-ascent and two-time-scale Lagrangian optimization.
arXiv Detail & Related papers (2025-04-27T22:45:00Z) - Stochastic Smoothed Primal-Dual Algorithms for Nonconvex Optimization with Linear Inequality Constraints [12.624604051853657]
We propose smoothed primal-dual algorithms for solving nonexact optimization problems with linear inequality constraints.
Our algorithms are single-loop iterations based on one gradient at each sample.
Unlike existing methods, our algorithms are free sub, large sizes or increasing parameters and use dual variable updates to ensure feasibility.
arXiv Detail & Related papers (2025-04-10T09:59:43Z) - Non-Expansive Mappings in Two-Time-Scale Stochastic Approximation: Finite-Time Analysis [0.0]
We study two-time-scale iterations, where the slower time-scale has a non-expansive mapping.<n>We show that the mean square error decays at a rate $O (1/k1/4-epsilon)$, where $epsilon>0$ is arbitrarily small.
arXiv Detail & Related papers (2025-01-18T16:00:14Z) - Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
Normalizing Constants [8.453228628258778]
We develop quantum algorithms for sampling logconcave distributions and for estimating their normalizing constants.
We exploit quantum analogs of the Monte Carlo method and quantum walks.
We also prove a $1/epsilon1-o(1)$ quantum lower bound for estimating normalizing constants.
arXiv Detail & Related papers (2022-10-12T19:10:43Z) - Finite-Time Error Bounds for Greedy-GQ [20.51105692499517]
We show that Greedy-GQ algorithm converges fast as finite-time error.
Our analysis provides for faster convergence step-sizes for choosing step-sizes.
arXiv Detail & Related papers (2022-09-06T15:04:57Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.<n>We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Optimal and instance-dependent guarantees for Markovian linear stochastic approximation [47.912511426974376]
We show a non-asymptotic bound of the order $t_mathrmmix tfracdn$ on the squared error of the last iterate of a standard scheme.
We derive corollaries of these results for policy evaluation with Markov noise.
arXiv Detail & Related papers (2021-12-23T18:47:50Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Higher-order Derivatives of Weighted Finite-state Machines [68.43084108204741]
This work examines the computation of higher-order derivatives with respect to the normalization constant for weighted finite-state machines.
We provide a general algorithm for evaluating derivatives of all orders, which has not been previously described in the literature.
Our algorithm is significantly faster than prior algorithms.
arXiv Detail & Related papers (2021-06-01T19:51:55Z) - Finite-Time Analysis for Double Q-learning [50.50058000948908]
We provide the first non-asymptotic, finite-time analysis for double Q-learning.
We show that both synchronous and asynchronous double Q-learning are guaranteed to converge to an $epsilon$-accurate neighborhood of the global optimum.
arXiv Detail & Related papers (2020-09-29T18:48:21Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Non-asymptotic Convergence Analysis of Two Time-scale (Natural)
Actor-Critic Algorithms [58.57004511121862]
Actor-critic (AC) and natural actor-critic (NAC) algorithms are often executed in two ways for finding optimal policies.
We show that two time-scale AC requires the overall sample complexity at the order of $mathcalO(epsilon-2.5log3(epsilon-1))$ to attain an $epsilon$-accurate stationary point.
We develop novel techniques for bounding the bias error of the actor due to dynamically changing Markovian sampling.
arXiv Detail & Related papers (2020-05-07T15:42:31Z) - Finite Time Analysis of Linear Two-timescale Stochastic Approximation
with Markovian Noise [28.891930079358954]
We provide a finite-time analysis for linear two timescale SA scheme.
Our bounds show that there is no discrepancy in the convergence rate between Markovian and martingale noise.
We present an expansion of the expected error with a matching lower bound.
arXiv Detail & Related papers (2020-02-04T13:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.