RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
- URL: http://arxiv.org/abs/2503.18549v1
- Date: Mon, 24 Mar 2025 11:01:05 GMT
- Title: RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
- Authors: Xiaolong Yin, Xingyu Lu, Jiahang Shen, Jingzhe Ni, Hailong Li, Ruofeng Tong, Min Tang, Peng Du,
- Abstract summary: We present a reinforcement learning training environment (gym) built on a CAD geometric engine.<n>We achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries.
- Score: 11.095896938331459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries. In addition, our method can significantly improve the efficiency of command sequence generation by a factor of 39X compared with the previous training gym.
Related papers
- CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images [69.7768227804928]
CADCrafter is an image-to-parametric CAD model generation framework that trains solely on synthetic textureless CAD data.
We introduce a geometry encoder to accurately capture diverse geometric features.
Our approach can robustly handle real unconstrained CAD images, and even generalize to unseen general objects.
arXiv Detail & Related papers (2025-04-07T06:01:35Z) - Revisiting CAD Model Generation by Learning Raster Sketch [17.853025952444437]
We introduce RECAD, a novel framework that generates Raster sketches and 3D Extrusions for CAD models.<n>By combining two diffusion networks, RECAD effectively generates sketch-and-extrude CAD models.
arXiv Detail & Related papers (2025-03-02T15:11:35Z) - 3D Geometric Shape Assembly via Efficient Point Cloud Matching [59.241448711254485]
We introduce Proxy Match Transform (PMT), an approximate high-order feature transform layer that enables reliable matching between mating surfaces of parts.
Building upon PMT, we introduce a new framework, dubbed Proxy Match TransformeR (PMTR), for the geometric assembly task.
We evaluate the proposed PMTR on the large-scale 3D geometric shape assembly benchmark dataset of Breaking Bad.
arXiv Detail & Related papers (2024-07-15T08:50:02Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
arXiv Detail & Related papers (2024-05-24T03:43:55Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
generative pre-training can boost the performance of fundamental models in 2D vision.
In 3D vision, the over-reliance on Transformer-based backbones and the unordered nature of point clouds have restricted the further development of generative pre-training.
We propose a novel 3D-to-2D generative pre-training method that is adaptable to any point cloud model.
arXiv Detail & Related papers (2023-07-27T16:07:03Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
Auto-regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space.
We propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids.
arXiv Detail & Related papers (2023-03-26T12:03:18Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Net is an end-to-end neural network aimed at reconstructing compact and easy-to-edit CAD models.
We show superiority over state-of-the-art alternatives including the closely related method for supervised CAD reconstruction.
arXiv Detail & Related papers (2023-03-19T09:26:03Z) - AutoCAD: Automatically Generating Counterfactuals for Mitigating
Shortcut Learning [70.70393006697383]
We present AutoCAD, a fully automatic and task-agnostic CAD generation framework.
In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework.
arXiv Detail & Related papers (2022-11-29T13:39:53Z) - Reconstructing editable prismatic CAD from rounded voxel models [16.03976415868563]
We introduce a novel neural network architecture to solve this challenging task.
Our method reconstructs the input geometry in the voxel space by decomposing the shape.
During inference, we obtain the CAD data by first searching a database of 2D constrained sketches.
arXiv Detail & Related papers (2022-09-02T16:44:10Z) - DeepCAD: A Deep Generative Network for Computer-Aided Design Models [37.655225142981564]
We present the first 3D generative model for a drastically different shape representation -- describing a shape as a sequence of computer-aided design (CAD) operations.
Drawing an analogy between CAD operations and natural language, we propose a CAD generative network based on the Transformer.
arXiv Detail & Related papers (2021-05-20T03:29:18Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
We introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes.
This supports a range of novel shape generation applications with disentangled control, such as of structure (geometry) while keeping geometry (structure) unchanged.
Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2020-08-12T17:06:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.