Advancing Cross-Organ Domain Generalization with Test-Time Style Transfer and Diversity Enhancement
- URL: http://arxiv.org/abs/2503.18567v1
- Date: Mon, 24 Mar 2025 11:22:27 GMT
- Title: Advancing Cross-Organ Domain Generalization with Test-Time Style Transfer and Diversity Enhancement
- Authors: Biwen Meng, Xi Long, Wanrong Yang, Ruochen Liu, Yi Tian, Yalin Zheng, Jingxin Liu,
- Abstract summary: We propose a Test-time style transfer (T3s) that uses a bidirectional mapping mechanism to project the features of the source and target domains into a unified feature space.<n>To further increase the style expression space, we introduce a Cross-domain style diversification module.<n>Our method has demonstrated effectiveness on three unseen datasets.
- Score: 15.154556569127116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has made significant progress in addressing challenges in various fields including computational pathology (CPath). However, due to the complexity of the domain shift problem, the performance of existing models will degrade, especially when it comes to multi-domain or cross-domain tasks. In this paper, we propose a Test-time style transfer (T3s) that uses a bidirectional mapping mechanism to project the features of the source and target domains into a unified feature space, enhancing the generalization ability of the model. To further increase the style expression space, we introduce a Cross-domain style diversification module (CSDM) to ensure the orthogonality between style bases. In addition, data augmentation and low-rank adaptation techniques are used to improve feature alignment and sensitivity, enabling the model to adapt to multi-domain inputs effectively. Our method has demonstrated effectiveness on three unseen datasets.
Related papers
- Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Cross-Domain Feature Augmentation for Domain Generalization [16.174824932970004]
We propose a cross-domain feature augmentation method named XDomainMix.
Experiments on widely used benchmark datasets demonstrate that our proposed method is able to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-05-14T13:24:19Z) - MetaDefa: Meta-learning based on Domain Enhancement and Feature
Alignment for Single Domain Generalization [12.095382249996032]
A novel meta-learning method based on domain enhancement and feature alignment (MetaDefa) is proposed to improve the model generalization performance.
In this paper, domain-invariant features can be fully explored by focusing on similar target regions between source and augmented domains feature space.
Extensive experiments on two publicly available datasets show that MetaDefa has significant generalization performance advantages in unknown multiple target domains.
arXiv Detail & Related papers (2023-11-27T15:13:02Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.
We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.
Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
arXiv Detail & Related papers (2023-11-22T09:18:49Z) - Exploiting Style Transfer-based Task Augmentation for Cross-Domain
Few-Shot Learning [4.678020383205135]
In cross-domain few-shot learning, the model trained on source domains struggles to generalize to the target domain.
We propose Task Augmented Meta-Learning (TAML) to conduct style transfer-based task augmentation.
The proposed TAML increases the diversity of styles of training tasks, and contributes to training a model with better domain generalization ability.
arXiv Detail & Related papers (2023-01-19T07:32:23Z) - DA-CIL: Towards Domain Adaptive Class-Incremental 3D Object Detection [2.207918236777924]
We propose a novel 3D domain adaptive class-incremental object detection framework, DA-CIL.
We design a novel dual-domain copy-paste augmentation method to construct multiple augmented domains for diversifying training distributions.
Experiments on various datasets demonstrate the effectiveness of the proposed method over baselines.
arXiv Detail & Related papers (2022-12-05T06:45:27Z) - Style Interleaved Learning for Generalizable Person Re-identification [69.03539634477637]
We propose a novel style interleaved learning (IL) framework for DG ReID training.
Unlike conventional learning strategies, IL incorporates two forward propagations and one backward propagation for each iteration.
We show that our model consistently outperforms state-of-the-art methods on large-scale benchmarks for DG ReID.
arXiv Detail & Related papers (2022-07-07T07:41:32Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
We argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models.
We name two-stream adaptive learning (TAL) to simultaneously model these two kinds of information.
Our framework can be applied to both single-source and multi-source domain generalization tasks.
arXiv Detail & Related papers (2021-11-29T01:27:42Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.