論文の概要: Identifying and Characterising Higher Order Interactions in Mobility Networks Using Hypergraphs
- arxiv url: http://arxiv.org/abs/2503.18572v1
- Date: Mon, 24 Mar 2025 11:29:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:33:30.868494
- Title: Identifying and Characterising Higher Order Interactions in Mobility Networks Using Hypergraphs
- Title(参考訳): ハイパーグラフを用いた移動体ネットワークにおける高次相互作用の同定と特徴付け
- Authors: Prathyush Sambaturu, Bernardo Gutierrez, Moritz U. G. Kraemer,
- Abstract要約: 本研究では,時間的観測窓を利用したグループ間相互作用抽出モデルであるコビジュエーションハイパーグラフを提案する。
パターンマイニングを頻繁に行うことで,異なる空間的・時間的スケールにわたる動的移動挙動を捉えたハイパーグラフを構築した。
我々のハイパーグラフに基づくモビリティ分析フレームワークは,様々な分野に適用可能なツールとして有用であることを示す。
- 参考スコア(独自算出の注目度): 1.1060425537315088
- License:
- Abstract: Understanding human mobility is essential for applications ranging from urban planning to public health. Traditional mobility models such as flow networks and colocation matrices capture only pairwise interactions between discrete locations, overlooking higher-order relationships among locations (i.e., mobility flow among two or more locations). To address this, we propose co-visitation hypergraphs, a model that leverages temporal observation windows to extract group interactions between locations from individual mobility trajectory data. Using frequent pattern mining, our approach constructs hypergraphs that capture dynamic mobility behaviors across different spatial and temporal scales. We validate our method on a publicly available mobility dataset and demonstrate its effectiveness in analyzing city-scale mobility patterns, detecting shifts during external disruptions such as extreme weather events, and examining how a location's connectivity (degree) relates to the number of points of interest (POIs) within it. Our results demonstrate that our hypergraph-based mobility analysis framework is a valuable tool with potential applications in diverse fields such as public health, disaster resilience, and urban planning.
- Abstract(参考訳): 都市計画から公衆衛生まで、人間の移動性を理解することが不可欠である。
フローネットワークやコロケーション行列のような伝統的なモビリティモデルは、個別の場所間のペアワイズ相互作用のみを捉え、場所間の高次の関係(すなわち2つ以上の場所間のモビリティフロー)を見渡す。
これを解決するために,時間的観測窓を利用した移動軌道データからグループ間相互作用を抽出するコビジュエーションハイパーグラフを提案する。
パターンマイニングを頻繁に行うことで,異なる空間的・時間的スケールにわたる動的移動挙動を捉えたハイパーグラフを構築した。
本研究では, 都市規模移動パターンの分析, 極端気象イベントなどの外乱時の変化の検出, 位置情報の接続性(度合い)が関心点数(POI)にどのように関係しているかを検証した。
我々のハイパーグラフに基づくモビリティ分析フレームワークは,公共衛生,災害の回復,都市計画といった様々な分野に応用できる貴重なツールであることを示す。
関連論文リスト
- Gaze-guided Hand-Object Interaction Synthesis: Dataset and Method [61.19028558470065]
本稿では,視線,手,物間相互作用の3次元モデリングを同時に行う最初のデータセットであるGazeHOIを紹介する。
これらの課題に対処するため,GHO-Diffusion という手動物体間相互作用拡散モデルを提案する。
また, GHO拡散のサンプリング段階におけるHOI-Manifold Guidanceを導入し, 生成した動きのきめ細かい制御を可能にする。
論文 参考訳(メタデータ) (2024-03-24T14:24:13Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - A generalized vector-field framework for mobility [0.0]
本稿では,任意の種類の移動に有効な個人軌跡から始まる一般ベクトル場表現を提案する。
個人の選挙が運動場のメソスコピック特性をどのように決定するかを示す。
筆者らのフレームワークは, メソスコピックな都市移動において, 隠れ対称性を捉えるための重要なツールである。
論文 参考訳(メタデータ) (2023-09-04T07:50:08Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - Spatiotemporal-Augmented Graph Neural Networks for Human Mobility Simulation [35.89805766554052]
本稿では,SRpatio-Augmented gaph Neural Network という,位置の動的時間的効果をモデル化する新しいフレームワークを提案する。
STARフレームワークは、行動対応を捉えるために様々な時間グラフを設計し、異なる場所の居住地をシミュレートする新しいブランチを構築し、最終的にその期間を逆向きに最適化する。
論文 参考訳(メタデータ) (2023-06-15T11:47:45Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
場所間の時間的関係を見つけることは、動的なオフライン広告やスマートな公共交通計画など、多くの都市アプリケーションに役立つ。
空間的に進化するグラフニューラルネットワーク(SEENet)を含むグラフ学習方式によるTrialの解を提案する。
SEConvは時間内アグリゲーションと時間間伝搬を実行し、位置メッセージパッシングの観点から、多面的に空間的に進化するコンテキストをキャプチャする。
SE-SSLは、位置表現学習を強化し、関係の空間性をさらに扱えるように、グローバルな方法でタイムアウェアな自己教師型学習タスクを設計する。
論文 参考訳(メタデータ) (2023-06-15T07:48:32Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - AttnMove: History Enhanced Trajectory Recovery via Attentional Network [15.685998183691655]
AttnMoveと呼ばれる新しい注目ニューラルネットワークベースのモデルを提案し、観測されていない位置を回復することによって個々の軌道を高密度化する。
本研究では,実世界の2つのデータセット上でのモデル評価を行い,最新手法と比較した性能向上を示す。
論文 参考訳(メタデータ) (2021-01-03T15:45:35Z) - Flow descriptors of human mobility networks [0.0]
本研究では,モビリティネットワークの流れとトポロジを特徴付けるシステム解析を提案し,その影響を個別のトレースに評価する。
この枠組みは, 都市計画の評価, 交通の最適化, 外部イベントや状況の影響の計測, 内部動態のモニタリング, 利用者の行動パターンに応じたプロファイル化に適している。
論文 参考訳(メタデータ) (2020-03-16T15:27:00Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z) - DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis [10.335486459171992]
我々は,Deep Embedded TrajEctor ClusTering Network (DETECT)と呼ばれる,移動行動クラスタリングのための教師なしニューラルネットワークを提案する。
DETECTは3つの部分で機能する: まず、重要な部分を要約し、地理的局所性から派生した文脈で拡張することで軌道を変換する。
第2部では、潜在行動空間におけるトラジェクトリの強力な表現を学び、これによりクラスタリング関数(例えば$k$means)を適用できる。
論文 参考訳(メタデータ) (2020-03-03T06:09:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。