論文の概要: Leveraging Land Cover Priors for Isoprene Emission Super-Resolution
- arxiv url: http://arxiv.org/abs/2503.18658v1
- Date: Mon, 24 Mar 2025 13:23:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:35:41.838510
- Title: Leveraging Land Cover Priors for Isoprene Emission Super-Resolution
- Title(参考訳): イソプレン・エミッション・スーパーリゾリューションに先立つ土地被覆の活用
- Authors: Christopher Ummerle, Antonio Giganti, Sara Mandelli, Paolo Bestagini, Stefano Tubaro,
- Abstract要約: 本研究は,BVOCエミッションマップの精錬に費用効率の高いデータ駆動型アプローチを提供することにより,大気化学と気候モデリングに寄与する。
提案手法は,衛星による排出データの利用性を高め,大気質予測,気候影響評価,環境研究への応用を支援する。
- 参考スコア(独自算出の注目度): 15.868193361155656
- License:
- Abstract: Remote sensing plays a crucial role in monitoring Earth's ecosystems, yet satellite-derived data often suffer from limited spatial resolution, restricting their applicability in atmospheric modeling and climate research. In this work, we propose a deep learning-based Super-Resolution (SR) framework that leverages land cover information to enhance the spatial accuracy of Biogenic Volatile Organic Compounds (BVOCs) emissions, with a particular focus on isoprene. Our approach integrates land cover priors as emission drivers, capturing spatial patterns more effectively than traditional methods. We evaluate the model's performance across various climate conditions and analyze statistical correlations between isoprene emissions and key environmental information such as cropland and tree cover data. Additionally, we assess the generalization capabilities of our SR model by applying it to unseen climate zones and geographical regions. Experimental results demonstrate that incorporating land cover data significantly improves emission SR accuracy, particularly in heterogeneous landscapes. This study contributes to atmospheric chemistry and climate modeling by providing a cost-effective, data-driven approach to refining BVOC emission maps. The proposed method enhances the usability of satellite-based emissions data, supporting applications in air quality forecasting, climate impact assessments, and environmental studies.
- Abstract(参考訳): リモートセンシングは地球の生態系のモニタリングにおいて重要な役割を担っているが、衛星由来のデータはしばしば空間分解能の制限に悩まされ、大気モデルや気候研究への応用が制限される。
本研究では,生物揮発性有機化合物(BVOC)の空間的精度を高めるために,土地被覆情報を利用した深層学習に基づく超解法(SR)フレームワークを提案する。
提案手法は,従来の手法よりも効率的に空間パターンを把握し,土地被覆先行をエミッションドライバとして統合する。
本研究では,様々な気候条件下でのモデルの性能を評価し,イソプレン排出量と作物や樹木の被覆データなどの重要な環境情報との統計的相関を解析した。
さらに,未確認の気候帯や地理的地域に適用することで,SRモデルの一般化能力を評価する。
土地被覆データの導入は,特に異種景観において,放射SRの精度を著しく向上させることを示した。
本研究は,BVOCエミッションマップの精錬に費用効率の高いデータ駆動型アプローチを提供することにより,大気化学と気候モデリングに寄与する。
提案手法は,衛星による排出データの利用性を高め,大気質予測,気候影響評価,環境研究への応用を支援する。
関連論文リスト
- Spatial Distribution-Shift Aware Knowledge-Guided Machine Learning [4.414885369283509]
多様な土壌特性と気候データの入力を考慮し,正確な土地排出予測モデルの構築を目指していた。
SDSA-KGMLモデルは中西部地域の特定状態に対して高い局所精度を達成する。
論文 参考訳(メタデータ) (2025-02-20T18:52:24Z) - Satellite Observations Guided Diffusion Model for Accurate Meteorological States at Arbitrary Resolution [48.34051432429767]
衛星観測(GridSat)を条件として,ERA5再解析データに基づいて事前学習した条件拡散モデルを提案する。
トレーニングの過程で,GridSat衛星観測から得られた情報を注意機構を介してERA5マップに融合することを提案する。
サンプリングでは、最適化可能な畳み込みカーネルを用いて、スケールアッププロセスをシミュレートした。
論文 参考訳(メタデータ) (2025-02-09T02:05:33Z) - Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
地球規模の気候モデルや衛星データから粗解射影を推定すると、下降問題は、より詳細な地域気候データを推定することを目的としている。
この問題は、気候変動による重大なリスクに対する効果的な適応、緩和、レジリエンスに社会的に不可欠である。
そこで本稿では, 空間的変動を抑えつつ, 微細な特徴を保ちながら, 空間的変動を捉えるためのKriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM)を提案する。
論文 参考訳(メタデータ) (2024-10-21T04:24:10Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data [5.235143203977019]
本研究では,地球表面面積の8.7%をカバーするSAR振幅データに対して,自己教師付き事前学習方式,マスク付き自動符号化を適用した。
この事前学習方式を用いることで、下流タスクのラベル付け要求を1桁以上削減できることを示す。
本研究は,タスクモデルと地域固有のSARモデルの開発を促進することにより,気候変動の緩和を著しく促進する。
論文 参考訳(メタデータ) (2023-10-02T00:11:47Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Super-Resolution of BVOC Maps by Adapting Deep Learning Methods [17.819699053848197]
生体内揮発性有機化合物(BVOC)は、生物圏-大気相互作用において重要な役割を果たす。
利用可能なほとんどのBVOCデータは、緩くスパースなサンプリンググリッドまたは小さな領域で得られる。
高解像度のBVOCデータは、大気質、大気化学、気候モニタリングなど多くの用途で望ましい。
論文 参考訳(メタデータ) (2023-02-15T10:21:38Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
逆ネットワークに基づく機械学習により、ダウンスケーリングにおける地域間空間相関を正確に再構築できることを示す。
提案手法は,気候変動の影響を地域間一貫した評価に有効である。
本稿では,低分解能降雨場を圧力場に置き換えた深部生成モデルに基づくダウンスケーリング手法の結果について述べる。
論文 参考訳(メタデータ) (2022-09-26T05:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。