論文の概要: Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data
- arxiv url: http://arxiv.org/abs/2310.00826v4
- Date: Mon, 30 Sep 2024 14:34:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:01.948217
- Title: Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data
- Title(参考訳): SARデータにおけるラベル要求低減のための大規模マスク自動符号化
- Authors: Matt Allen, Francisco Dorr, Joseph A. Gallego-Mejia, Laura Martínez-Ferrer, Anna Jungbluth, Freddie Kalaitzis, Raúl Ramos-Pollán,
- Abstract要約: 本研究では,地球表面面積の8.7%をカバーするSAR振幅データに対して,自己教師付き事前学習方式,マスク付き自動符号化を適用した。
この事前学習方式を用いることで、下流タスクのラベル付け要求を1桁以上削減できることを示す。
本研究は,タスクモデルと地域固有のSARモデルの開発を促進することにより,気候変動の緩和を著しく促進する。
- 参考スコア(独自算出の注目度): 5.235143203977019
- License:
- Abstract: Satellite-based remote sensing is instrumental in the monitoring and mitigation of the effects of anthropogenic climate change. Large scale, high resolution data derived from these sensors can be used to inform intervention and policy decision making, but the timeliness and accuracy of these interventions is limited by use of optical data, which cannot operate at night and is affected by adverse weather conditions. Synthetic Aperture Radar (SAR) offers a robust alternative to optical data, but its associated complexities limit the scope of labelled data generation for traditional deep learning. In this work, we apply a self-supervised pretraining scheme, masked autoencoding, to SAR amplitude data covering 8.7\% of the Earth's land surface area, and tune the pretrained weights on two downstream tasks crucial to monitoring climate change - vegetation cover prediction and land cover classification. We show that the use of this pretraining scheme reduces labelling requirements for the downstream tasks by more than an order of magnitude, and that this pretraining generalises geographically, with the performance gain increasing when tuned downstream on regions outside the pretraining set. Our findings significantly advance climate change mitigation by facilitating the development of task and region-specific SAR models, allowing local communities and organizations to deploy tailored solutions for rapid, accurate monitoring of climate change effects.
- Abstract(参考訳): 人工衛星によるリモートセンシングは、人為的気候変動の影響の監視と緩和に役立っている。
これらのセンサから得られた大規模で高解像度なデータは、介入や政策決定に役立てることができるが、これらの介入のタイムラインと正確性は、夜間には動作できず、悪天候の影響を受けない光学データによって制限される。
SAR(Synthetic Aperture Radar)は、光学データに対して堅牢な代替手段を提供するが、関連する複雑さは、従来のディープラーニングのためのラベル付きデータ生成の範囲を制限する。
本研究では,地球表面積の8.7\%をカバーするSAR振幅データに対して,自己監督型事前学習スキーム,マスク付き自己エンコーディングを適用し,気候変動の監視に不可欠な2つの下流課題(植生被覆予測と土地被覆分類)について,事前訓練した重量を調整した。
この事前学習方式を用いることで、下流タスクのラベル付け要求が桁違いに小さくなり、事前学習セット外の領域で下流をチューニングした場合、性能が向上し、地理的に一般化されることが示されている。
課題と地域固有のSARモデルの開発を促進することで気候変動の緩和を著しく促進し、地域社会や組織が気候変動効果の迅速かつ正確なモニタリングを行うための調整されたソリューションを展開できるようにした。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Spatially-resolved hyperlocal weather prediction and anomaly detection
using IoT sensor networks and machine learning techniques [0.0]
我々は,IoTセンサネットワークと機械学習技術を用いた局部気象予測と異常検出を組み合わせた新しいアプローチを提案する。
本システムは,予測の空間分解能を高め,リアルタイムに異常を効果的に検出することができる。
以上の結果から,本システムは意思決定を促進できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-17T05:04:53Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
本研究では,内陸海域における水流強度を予測するための機械学習によるアプローチを提案する。
我々は高密度水流強度予測の課題に最初に取り組みました。
論文 参考訳(メタデータ) (2023-04-04T09:28:36Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
逆ネットワークに基づく機械学習により、ダウンスケーリングにおける地域間空間相関を正確に再構築できることを示す。
提案手法は,気候変動の影響を地域間一貫した評価に有効である。
本稿では,低分解能降雨場を圧力場に置き換えた深部生成モデルに基づくダウンスケーリング手法の結果について述べる。
論文 参考訳(メタデータ) (2022-09-26T05:45:16Z) - Predicting the Geoeffectiveness of CMEs Using Machine Learning [0.0]
この研究は、ホワイトライトコロナグラフデータセットに基づいてトレーニングされたさまざまな機械学習手法の実験に焦点を当てている。
我々は、ロジスティック回帰、K-Nearest Neighbors、Support Vector Machines、フォワード人工ニューラルネットワーク、およびアンサンブルモデルを用いたバイナリ分類モデルを開発する。
このタスクの主な課題、すなわち、我々のデータセットにおけるジオエフェクトイベントの数と非エフェクトイベントの数の間の極端な不均衡について論じる。
論文 参考訳(メタデータ) (2022-06-23T03:56:22Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
我々は、高分解能でバイアス補正された予測のアンサンブルを生成するために、CorrectorGANという条件付きジェネレーティブ・アドバイサル・ネットワークを訓練する。
一度訓練されたCorrectorGANは、1台のマシンで数秒で予測を生成する。
その結果、地域モデルの必要性や、データ駆動型ダウンスケーリングと修正手法がデータ・プール領域に移行できるかどうかについて、エキサイティングな疑問が浮かび上がっている。
論文 参考訳(メタデータ) (2022-03-23T09:45:12Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。