論文の概要: Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining
- arxiv url: http://arxiv.org/abs/2503.18703v1
- Date: Mon, 24 Mar 2025 14:15:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:35:38.024451
- Title: Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining
- Title(参考訳): 教師なし画像評価に基づくチャンネル整合性優先と自己再構成戦略
- Authors: Guanglu Dong, Tianheng Zheng, Yuanzhouhan Cao, Linbo Qing, Chao Ren,
- Abstract要約: 本稿では,新しいチャネル整合性優先・自己再構成戦略に基づく教師なし画像評価フレームワークCSUDを提案する。
未ペアデータによるトレーニングでは、CSUDは高品質な擬似クリーンで雨天のイメージペアを生成することができる。
複数の合成および実世界のデータセットの実験により、CSUDの劣化性能が、他の最先端の教師なし手法を上回ることを示した。
- 参考スコア(独自算出の注目度): 6.748447305270562
- License:
- Abstract: Recently, deep image deraining models based on paired datasets have made a series of remarkable progress. However, they cannot be well applied in real-world applications due to the difficulty of obtaining real paired datasets and the poor generalization performance. In this paper, we propose a novel Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining framework, CSUD, to tackle the aforementioned challenges. During training with unpaired data, CSUD is capable of generating high-quality pseudo clean and rainy image pairs which are used to enhance the performance of deraining network. Specifically, to preserve more image background details while transferring rain streaks from rainy images to the unpaired clean images, we propose a novel Channel Consistency Loss (CCLoss) by introducing the Channel Consistency Prior (CCP) of rain streaks into training process, thereby ensuring that the generated pseudo rainy images closely resemble the real ones. Furthermore, we propose a novel Self-Reconstruction (SR) strategy to alleviate the redundant information transfer problem of the generator, further improving the deraining performance and the generalization capability of our method. Extensive experiments on multiple synthetic and real-world datasets demonstrate that the deraining performance of CSUD surpasses other state-of-the-art unsupervised methods and CSUD exhibits superior generalization capability.
- Abstract(参考訳): 近年,ペア化データセットに基づくディープイメージデクリニングモデルが目覚ましい進歩を遂げている。
しかし、実際のペア化データセットの取得が困難であり、一般化性能が低かったために、現実のアプリケーションではうまく適用できない。
本稿では、上記の課題に対処するために、新しいチャンネル整合性事前・自己再構成戦略に基づく教師なし画像評価フレームワークCSUDを提案する。
未ペアデータによるトレーニング中、CSUDは、デライニングネットワークの性能を高めるために使用される高品質な擬似クリーンで雨のイメージペアを生成することができる。
具体的には、雨天からの雨天を未経験のクリーンイメージに移行しながら、より画像背景の詳細を保存するために、雨天のチャネル一貫性優先(CCP)をトレーニングプロセスに導入し、発生した擬似雨天画像が実際のものとよく似ていることを保証して、新しいチャンネル一貫性損失(CCLoss)を提案する。
さらに,ジェネレータの冗長な情報伝達問題を軽減するための自己再構成(SR)戦略を提案する。
複数の合成および実世界のデータセットに対する大規模な実験により、CSUDの劣化性能は他の最先端の教師なし手法よりも優れており、CSUDは優れた一般化能力を示している。
関連論文リスト
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
雨のストリークは撮影画像の可視性を著しく低下させる。
既存のディープラーニングベースの画像デライニング手法では、手作業で構築されたネットワークを使用して、雨の降った画像から明確な画像への直接投影を学習する。
本稿では,雨天画像と澄んだ画像との相関関係を考察した,対照的な学習に基づく画像デライニング手法を提案する。
論文 参考訳(メタデータ) (2023-05-29T13:51:41Z) - Single Image Deraining via Feature-based Deep Convolutional Neural
Network [13.39233717329633]
データ駆動型アプローチとモデルベースアプローチを組み合わせた,単一画像デラミニングアルゴリズムを提案する。
実験の結果,提案アルゴリズムは質的,定量的両面で最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-05-03T13:12:51Z) - Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
本研究では,拡散モデルに基づく最初の実世界の画像デライニングパラダイムであるRainDiffを提案する。
安定的で非敵対的なサイクル一貫性のあるアーキテクチャを導入し、トレーニングをエンドツーエンドで行えます。
また,複数の降雨の先行学習によって条件付けられた拡散生成過程を通じて,所望の出力を洗練する劣化条件拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-01-23T13:34:01Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
本稿では,CycleGANに基づくディープネットワークの監視手法について述べる。
我々は,より効果的なトレーニングにつながるCycleGANのトレーニングに新たな損失を導入し,高品質な再構築を実現した。
提案手法は, 脱落, 脱落, 脱落といった様々な修復作業に効果的に適用できることを実証する。
論文 参考訳(メタデータ) (2022-04-23T01:30:47Z) - Structure-Preserving Deraining with Residue Channel Prior Guidance [33.41254475191555]
多くのハイレベルコンピュータビジョンタスクにおいて、単一画像のデアライニングが重要である。
RCP誘導を用いた構造保存評価ネットワーク(SPDNet)を提案する。
SPDNetは、RCPガイダンスの下で、明瞭で正確な構造を持つ高品質な無雨画像を直接生成する。
論文 参考訳(メタデータ) (2021-08-20T09:09:56Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
本研究は,本質的な降雨構造を有するネットワークの出力残余を強制することで,新たなネットワークアーキテクチャを提案する。
このような構造的残差設定は、ネットワークによって抽出された雨層が、一般的な雨害の以前の知識に微妙に従うことを保証している。
論文 参考訳(メタデータ) (2020-05-19T05:52:13Z) - Semi-DerainGAN: A New Semi-supervised Single Image Deraining Network [45.78251508028359]
本稿では,セミデリンGANと呼ばれる,半教師付きGANベースのデラミニングネットワークを提案する。
2つの教師なしおよび教師なしのプロセスを使用して、一様ネットワークで合成画像と実際の雨画像の両方を使用することができる。
そこで我々は,実対と偽対を識別する識別器を設計した。
論文 参考訳(メタデータ) (2020-01-23T07:01:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。