Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
- URL: http://arxiv.org/abs/2503.18731v1
- Date: Mon, 24 Mar 2025 14:38:33 GMT
- Title: Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
- Authors: Chris Pedersen, Laure Zanna, Joan Bruna,
- Abstract summary: We show that an implicit estimator of the score of an invariant measure can be used to stabilize autoregressive emulator rollouts.<n>We show that this model of the score function can be used to stabilize autoregressive rollouts by applying on-the-fly denoising during inference.
- Score: 32.51861730498945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autoregressive surrogate models (or \textit{emulators}) of spatiotemporal systems provide an avenue for fast, approximate predictions, with broad applications across science and engineering. At inference time, however, these models are generally unable to provide predictions over long time rollouts due to accumulation of errors leading to diverging trajectories. In essence, emulators operate out of distribution, and controlling the online distribution quickly becomes intractable in large-scale settings. To address this fundamental issue, and focusing on time-stationary systems admitting an invariant measure, we leverage diffusion models to obtain an implicit estimator of the score of this invariant measure. We show that this model of the score function can be used to stabilize autoregressive emulator rollouts by applying on-the-fly denoising during inference, a process we call \textit{thermalization}. Thermalizing an emulator rollout is shown to extend the time horizon of stable predictions by an order of magnitude in complex systems exhibiting turbulent and chaotic behavior, opening up a novel application of diffusion models in the context of neural emulation.
Related papers
- Predicting Forced Responses of Probability Distributions via the Fluctuation-Dissipation Theorem and Generative Modeling [0.0]
We present a novel data-driven framework for estimating the response of higher-order moments of nonlinear systems to small external perturbations.
Standard implementations rely on Gaussian approximations, which can often accurately predict the mean response but usually introduce significant biases in higher-order moments.
We combine GFDT with recent advances in score-basedgenerative modeling, which enable direct estimation of the score function without requiring full density reconstruction.
arXiv Detail & Related papers (2025-04-17T20:54:33Z) - Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs [52.50288418639075]
We propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time.
Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
arXiv Detail & Related papers (2025-03-27T15:08:58Z) - Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
We introduce Dynamical Diffusion (DyDiff), a theoretically sound framework that incorporates temporally aware forward and reverse processes.<n>Experiments across scientifictemporal forecasting, video prediction, and time series forecasting demonstrate that Dynamical Diffusion consistently improves performance in temporal predictive tasks.
arXiv Detail & Related papers (2025-03-02T16:10:32Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators [46.348283638884425]
We propose a two-step unsupervised deep learning framework named as Latent Autoregressive Recurrent Model (CLARM) for learning dynamics of charged particles in accelerators.
The CLARM can generate projections at various accelerator sampling modules by capturing and decoding the latent space representation.
The results demonstrate that the generative and forecasting ability of the proposed approach is promising when tested against a variety of evaluation metrics.
arXiv Detail & Related papers (2024-03-19T22:05:17Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Deep Convolutional Architectures for Extrapolative Forecast in
Time-dependent Flow Problems [0.0]
Deep learning techniques are employed to model the system dynamics for advection dominated problems.
These models take as input a sequence of high-fidelity vector solutions for consecutive time-steps obtained from the PDEs.
Non-intrusive reduced-order modelling techniques such as deep auto-encoder networks are utilized to compress the high-fidelity snapshots.
arXiv Detail & Related papers (2022-09-18T03:45:56Z) - A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models [12.74899449479468]
We propose a dedicated-temporal neural network based framework for model emulation.<n>The proposed approach can approximate forecasts at fine spatial and temporal resolutions that are often challenging for neural network based approaches.<n> Empirical experiments show good agreement between simulated and emulated firefronts, with an average Jaccard score of 0.76.
arXiv Detail & Related papers (2022-06-17T03:11:18Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.