DEF: Diffusion-augmented Ensemble Forecasting
- URL: http://arxiv.org/abs/2506.07324v1
- Date: Sun, 08 Jun 2025 23:43:41 GMT
- Title: DEF: Diffusion-augmented Ensemble Forecasting
- Authors: David Millard, Arielle Carr, Stéphane Gaudreault, Ali Baheri,
- Abstract summary: We present DEF (textbfulEnsemble textbfulForecasting), a novel approach for generating initial condition perturbations.<n>We demonstrate that a simple conditional diffusion model can generate meaningful structured perturbations.<n>We show that the model accumulates less error over long-term forecasts while producing meaningful forecast distributions.
- Score: 5.433548785820674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present DEF (\textbf{\ul{D}}iffusion-augmented \textbf{\ul{E}}nsemble \textbf{\ul{F}}orecasting), a novel approach for generating initial condition perturbations. Modern approaches to initial condition perturbations are primarily designed for numerical weather prediction (NWP) solvers, limiting their applicability in the rapidly growing field of machine learning for weather prediction. Consequently, stochastic models in this domain are often developed on a case-by-case basis. We demonstrate that a simple conditional diffusion model can (1) generate meaningful structured perturbations, (2) be applied iteratively, and (3) utilize a guidance term to intuitivey control the level of perturbation. This method enables the transformation of any deterministic neural forecasting system into a stochastic one. With our stochastic extended systems, we show that the model accumulates less error over long-term forecasts while producing meaningful forecast distributions. We validate our approach on the 5.625$^\circ$ ERA5 reanalysis dataset, which comprises atmospheric and surface variables over a discretized global grid, spanning from the 1960s to the present. On this dataset, our method demonstrates improved predictive performance along with reasonable spread estimates.
Related papers
- Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
We introduce Elucidated Rolling Diffusion Models (ERDM)<n>ERDM is the first framework to unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM)<n>On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5circ resolution, ERDM consistently outperforms key diffusion-based baselines.
arXiv Detail & Related papers (2025-06-24T21:44:31Z) - Diffusion models for probabilistic precipitation generation from atmospheric variables [1.6099193327384094]
In Earth system models (ESMs), precipitation is not resolved explicitly, but represented by parameterizations.<n>We present a novel approach, based on generative machine learning, which integrates a conditional diffusion model with a UNet architecture.<n>Unlike traditional parameterizations, our framework efficiently produces ensemble predictions, capturing uncertainties in precipitation, and does not require fine-tuning by hand.
arXiv Detail & Related papers (2025-04-01T00:21:31Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes [18.344934424278048]
We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling.
We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a F"ollmer process.
arXiv Detail & Related papers (2024-03-20T16:33:06Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - SwinVRNN: A Data-Driven Ensemble Forecasting Model via Learned
Distribution Perturbation [16.540748935603723]
We propose a Swin Transformer-based Variational Recurrent Neural Network (SwinVRNN), which is a weather forecasting model combining a SwinRNN predictor with a perturbation module.
SwinVRNN surpasses operational ECMWF Integrated Forecasting System (IFS) on surface variables of 2-m temperature and 6-hourly total precipitation at all lead times up to five days.
arXiv Detail & Related papers (2022-05-26T05:11:58Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.