Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
- URL: http://arxiv.org/abs/2503.18752v1
- Date: Mon, 24 Mar 2025 15:01:00 GMT
- Title: Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
- Authors: Der-Hau Lee,
- Abstract summary: The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns.<n>The proposed algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
Related papers
- Lane-Keeping Control of Autonomous Vehicles Through a Soft-Constrained Iterative LQR [0.0]
We develop a novel soft-constrained iterative linear quadratic regulator (soft-CILQR) algorithm by integrating CILQR algorithm and a model predictive control (MPC) constraint relaxation method.<n>The proposed soft-CILQR algorithm achieved an average runtime of 2.55 ms and is thus applicable for real-time autonomous driving scenarios.
arXiv Detail & Related papers (2023-11-28T15:58:13Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Safe Reinforcement Learning with Probabilistic Control Barrier Functions
for Ramp Merging [7.103977648997475]
We use control barrier functions embedded into the reinforcement learning policy to optimize the performance of the autonomous driving vehicle.
The proposed algorithm is not just a safe ramp merging algorithm but a safe autonomous driving algorithm applied to address ramp merging on highways.
arXiv Detail & Related papers (2022-12-01T16:14:40Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
This paper presents a self-evolving decision-making system based on the Integrated Decision and Control (IDC)
An RL algorithm called constrained mixed policy gradient (CMPG) is proposed to consistently upgrade the driving policy of the IDC.
Experiment results show that boosting by data, the system can achieve better driving ability over model-based methods.
arXiv Detail & Related papers (2022-10-19T14:58:41Z) - Efficient Perception, Planning, and Control Algorithm for Vision-Based Automated Vehicles [0.0]
This study proposes an efficient framework for the operation of vision-based automatic vehicles.
The framework requires only a monocular camera and a few radars.
Experiments demonstrate that the proposed autonomous driving system can be applied in current autonomous vehicles.
arXiv Detail & Related papers (2022-09-15T04:51:17Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
The proposed algorithm consists of three parts: an imaginative model for anticipating results before parking, an improved rapid-exploring random tree (RRT) and a path smoothing module.
Our algorithm is based on a real kinematic vehicle model; which makes it more suitable for algorithm application on real autonomous cars.
In order to evaluate the algorithm's effectiveness, we have compared our algorithm with traditional RRT, within three different parking scenarios.
arXiv Detail & Related papers (2021-08-25T18:24:34Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
A new federated learning (FL) framework is proposed for designing the autonomous controller of connected and autonomous vehicles (CAVs)
A novel dynamic federated proximal (DFP) algorithm is proposed that accounts for the mobility of CAVs, the wireless fading channels, and the unbalanced and nonindependent and identically distributed data across CAVs.
A rigorous convergence analysis is performed for the proposed algorithm to identify how fast the CAVs converge to using the optimal controller.
arXiv Detail & Related papers (2021-02-05T19:57:47Z) - Decision-making Strategy on Highway for Autonomous Vehicles using Deep
Reinforcement Learning [6.298084785377199]
A deep reinforcement learning (DRL)-enabled decision-making policy is constructed for autonomous vehicles to address the overtaking behaviors on the highway.
A hierarchical control framework is presented to control these vehicles, which indicates the upper-level manages the driving decisions.
The DDQN-based overtaking policy could accomplish highway driving tasks efficiently and safely.
arXiv Detail & Related papers (2020-07-16T23:41:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.