Synthetic Function Demonstrations Improve Generation in Low-Resource Programming Languages
- URL: http://arxiv.org/abs/2503.18760v1
- Date: Mon, 24 Mar 2025 15:09:03 GMT
- Title: Synthetic Function Demonstrations Improve Generation in Low-Resource Programming Languages
- Authors: Nick McKenna, Xinnuo Xu, Jack Williams, Nick Wilson, Benjamin Van Durme, Christian Poelitz,
- Abstract summary: We present novel approaches to the creation of such data for low resource programming languages.<n>We generate fully-synthetic, textbook-quality demonstrations of common library functions in an example domain of Excel formulas.<n>We show advantages of finetuning over standard, off-the-shelf RAG approaches, which can offer only modest improvement due to the unfamiliar target domain.
- Score: 32.08109313615468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key consideration when training an LLM is whether the target language is more or less resourced, whether this is English compared to Welsh, or Python compared to Excel. Typical training data for programming languages consist of real program demonstrations coupled with human-written comments. Here we present novel approaches to the creation of such data for low resource programming languages. We generate fully-synthetic, textbook-quality demonstrations of common library functions in an example domain of Excel formulas, using a teacher model. We then finetune an underperforming student model, and show improvement on 2 question-answering datasets recast into the Excel domain. We show advantages of finetuning over standard, off-the-shelf RAG approaches, which can offer only modest improvement due to the unfamiliar target domain.
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - Efficient Continual Pre-training of LLMs for Low-resource Languages [45.44796295841526]
We develop a new algorithm to select a subset of texts from a larger corpus.
In search of further improvement, we design a new algorithm to select tokens to include in the LLM vocabulary.
arXiv Detail & Related papers (2024-12-13T16:13:35Z) - Paloma: A Benchmark for Evaluating Language Model Fit [112.481957296585]
Evaluations of language models (LMs) commonly report perplexity on monolithic data held out from training.<n>We introduce Perplexity Analysis for Language Model Assessment (Paloma), a benchmark to measure LM fit to 546 English and code domains.
arXiv Detail & Related papers (2023-12-16T19:12:45Z) - GenCodeSearchNet: A Benchmark Test Suite for Evaluating Generalization
in Programming Language Understanding [5.9535699822923]
We propose a new benchmark dataset called GenCodeSearchNet (GeCS) to evaluate the programming language understanding capabilities of language models.
As part of the full dataset, we introduce a new, manually curated subset StatCodeSearch that focuses on R, a popular but so far underrepresented programming language.
For evaluation and comparison, we collect several baseline results using fine-tuned BERT-style models and GPT-style large language models.
arXiv Detail & Related papers (2023-11-16T09:35:00Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Generate to Understand for Representation [3.5325087487696463]
GUR is a pretraining framework that combines language modeling and contrastive learning objectives in a single training step.
GUR achieves impressive results without any labeled training data, outperforming all other pretrained baselines as a retriever at the recall benchmark in a zero-shot setting.
arXiv Detail & Related papers (2023-06-14T06:00:18Z) - An Open Dataset and Model for Language Identification [84.15194457400253]
We present a LID model which achieves a macro-average F1 score of 0.93 and a false positive rate of 0.033 across 201 languages.
We make both the model and the dataset available to the research community.
arXiv Detail & Related papers (2023-05-23T08:43:42Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z) - LaoPLM: Pre-trained Language Models for Lao [3.2146309563776416]
Pre-trained language models (PLMs) can capture different levels of concepts in context and hence generate universal language representations.
Although PTMs have been widely used in most NLP applications, it is under-represented in Lao NLP research.
We construct a text classification dataset to alleviate the resource-scare situation of the Lao language.
We present the first transformer-based PTMs for Lao with four versions: BERT-small, BERT-base, ELECTRA-small and ELECTRA-base, and evaluate it over two downstream tasks: part-of-speech tagging and text classification.
arXiv Detail & Related papers (2021-10-12T11:13:07Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.