論文の概要: CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos
- arxiv url: http://arxiv.org/abs/2503.18808v1
- Date: Mon, 24 Mar 2025 15:50:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:35:29.258508
- Title: CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos
- Title(参考訳): CRCL:サーベイランスビデオにおける異常検出のための因果表現一貫性学習
- Authors: Yang Liu, Hongjin Wang, Zepu Wang, Xiaoguang Zhu, Jing Liu, Peng Sun, Rui Tang, Jianwei Du, Victor C. M. Leung, Liang Song,
- Abstract要約: Video Anomaly Detection (VAD) は、ビデオ理解コミュニティの基本的な課題であり続けている。
従来の手法では、通常の時空間パターン固有の正規性を教師なしの方法でモデル化するために、簡単に収集された通常のイベントのみを使用する。
本研究では,教師なしビデオ正規化学習における因果変数の暗黙的なマイニングを行うために,因果一貫性表現学習(CRCL)を提案する。
- 参考スコア(独自算出の注目度): 40.63347505454772
- License:
- Abstract: Video Anomaly Detection (VAD) remains a fundamental yet formidable task in the video understanding community, with promising applications in areas such as information forensics and public safety protection. Due to the rarity and diversity of anomalies, existing methods only use easily collected regular events to model the inherent normality of normal spatial-temporal patterns in an unsupervised manner. Previous studies have shown that existing unsupervised VAD models are incapable of label-independent data offsets (e.g., scene changes) in real-world scenarios and may fail to respond to light anomalies due to the overgeneralization of deep neural networks. Inspired by causality learning, we argue that there exist causal factors that can adequately generalize the prototypical patterns of regular events and present significant deviations when anomalous instances occur. In this regard, we propose Causal Representation Consistency Learning (CRCL) to implicitly mine potential scene-robust causal variable in unsupervised video normality learning. Specifically, building on the structural causal models, we propose scene-debiasing learning and causality-inspired normality learning to strip away entangled scene bias in deep representations and learn causal video normality, respectively. Extensive experiments on benchmarks validate the superiority of our method over conventional deep representation learning. Moreover, ablation studies and extension validation show that the CRCL can cope with label-independent biases in multi-scene settings and maintain stable performance with only limited training data available.
- Abstract(参考訳): ビデオ異常検出(VAD)は、情報法医学や公衆安全保護などの分野において、ビデオ理解コミュニティの基本的な課題であり続けている。
異常の希少性と多様性のため、既存の手法では、通常の時空間パターン固有の正規性を教師なしの方法でモデル化するためにのみ、容易に収集された正規イベントを使用する。
これまでの研究では、既存の教師なしVADモデルは実世界のシナリオではラベルに依存しないデータオフセット(例:シーンの変化)ができないことが示されており、ディープニューラルネットワークの過剰な一般化により光異常に反応しない可能性がある。
因果学習に触発されて、正規事象の原型パターンを適切に一般化し、異常発生時に有意な偏差を示す因果因子が存在すると論じる。
そこで本研究では,教師なしビデオ正規化学習において,暗黙的にシーンローバストな因果変数を抽出する因果表現一貫性学習(CRCL)を提案する。
具体的には、その構造的因果モデルに基づいて、シーン偏見学習と因果性に着想を得た正規性学習を提案し、それぞれ深部表現における絡み合ったシーンバイアスを除去し、因果ビデオの正規性を学ぶ。
ベンチマークの大規模な実験は,従来の深層表現学習よりも提案手法の優位性を検証した。
さらに,アブリレーション研究と拡張検証により,CRCLはマルチシーン環境におけるラベル非依存バイアスに対処し,限られたトレーニングデータのみを使用して安定した性能を維持することができることを示した。
関連論文リスト
- Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Delving into CLIP latent space for Video Anomaly Recognition [24.37974279994544]
本稿では,CLIP などの大規模言語と視覚(LLV)モデルを組み合わせた新しい手法 AnomalyCLIP を提案する。
当社のアプローチでは、通常のイベントサブスペースを特定するために、潜伏するCLIP機能空間を操作することが特に必要です。
異常フレームがこれらの方向に投影されると、それらが特定のクラスに属している場合、大きな特徴量を示す。
論文 参考訳(メタデータ) (2023-10-04T14:01:55Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection [0.0]
時系列異常検出(TSAD)は多くの産業応用において重要な役割を担っている。
コントラスト学習は、ラベルのないデータから意味のある表現を抽出する過程において、時系列領域で勢いを増している。
本研究では,学習可能な変換で強化されたウィンドウベースのコントラスト学習戦略を取り入れた新しいアプローチであるCNTを提案する。
論文 参考訳(メタデータ) (2023-04-16T21:36:19Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
既存のほとんどのメソッドはオートエンコーダを使用して、通常のビデオの再構築を学ぶ。
本稿では2つのエンコーダが暗黙的に外観と動きの特徴をモデル化する構造である暗黙の2経路AE(ITAE)を提案する。
通常のシーンの複雑な分布については,ITAE特徴量の正規密度推定を提案する。
NFモデルは暗黙的に学習された機能を通じて正常性を学ぶことでITAEのパフォーマンスを高める。
論文 参考訳(メタデータ) (2020-10-15T05:02:02Z) - Learning Memory-guided Normality for Anomaly Detection [33.77435699029528]
本稿では,異常検出に対する教師なし学習手法を提案する。
また,メモリをトレーニングするための特徴量と分離性損失を新たに提示し,メモリアイテムの識別能力と通常のデータからの深い学習能力を高める。
論文 参考訳(メタデータ) (2020-03-30T05:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。