CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos
- URL: http://arxiv.org/abs/2503.18808v1
- Date: Mon, 24 Mar 2025 15:50:19 GMT
- Title: CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos
- Authors: Yang Liu, Hongjin Wang, Zepu Wang, Xiaoguang Zhu, Jing Liu, Peng Sun, Rui Tang, Jianwei Du, Victor C. M. Leung, Liang Song,
- Abstract summary: Video Anomaly Detection (VAD) remains a fundamental yet formidable task in the video understanding community.<n>Previous methods only use easily collected regular events to model the inherent normality of normal spatial-temporal patterns in an unsupervised manner.<n>We propose Causal Consistency Representation Learning (CRCL) to implicitly mine potential scene-robust causal variable in unsupervised video normality learning.
- Score: 40.63347505454772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Anomaly Detection (VAD) remains a fundamental yet formidable task in the video understanding community, with promising applications in areas such as information forensics and public safety protection. Due to the rarity and diversity of anomalies, existing methods only use easily collected regular events to model the inherent normality of normal spatial-temporal patterns in an unsupervised manner. Previous studies have shown that existing unsupervised VAD models are incapable of label-independent data offsets (e.g., scene changes) in real-world scenarios and may fail to respond to light anomalies due to the overgeneralization of deep neural networks. Inspired by causality learning, we argue that there exist causal factors that can adequately generalize the prototypical patterns of regular events and present significant deviations when anomalous instances occur. In this regard, we propose Causal Representation Consistency Learning (CRCL) to implicitly mine potential scene-robust causal variable in unsupervised video normality learning. Specifically, building on the structural causal models, we propose scene-debiasing learning and causality-inspired normality learning to strip away entangled scene bias in deep representations and learn causal video normality, respectively. Extensive experiments on benchmarks validate the superiority of our method over conventional deep representation learning. Moreover, ablation studies and extension validation show that the CRCL can cope with label-independent biases in multi-scene settings and maintain stable performance with only limited training data available.
Related papers
- Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - Learn Suspected Anomalies from Event Prompts for Video Anomaly Detection [16.77262005540559]
A novel framework is proposed to guide the learning of suspected anomalies from event prompts.
It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos.
Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC.
arXiv Detail & Related papers (2024-03-02T10:42:47Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Delving into CLIP latent space for Video Anomaly Recognition [24.37974279994544]
We introduce the novel method AnomalyCLIP, the first to combine Large Language and Vision (LLV) models, such as CLIP.
Our approach specifically involves manipulating the latent CLIP feature space to identify the normal event subspace.
When anomalous frames are projected onto these directions, they exhibit a large feature magnitude if they belong to a particular class.
arXiv Detail & Related papers (2023-10-04T14:01:55Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection [0.0]
Time series anomaly detection (TSAD) plays a vital role in many industrial applications.<n>Contrastive learning has gained momentum in the time series domain for its prowess in extracting meaningful representations from unlabeled data.<n>In this study, we propose a novel approach, CNT, that incorporates a window-based contrastive learning strategy fortified with learnable transformations.
arXiv Detail & Related papers (2023-04-16T21:36:19Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
Most existing methods use an autoencoder to learn to reconstruct normal videos.
We propose an implicit two-path AE (ITAE), a structure in which two encoders implicitly model appearance and motion features.
For the complex distribution of normal scenes, we suggest normal density estimation of ITAE features.
NF models intensify ITAE performance by learning normality through implicitly learned features.
arXiv Detail & Related papers (2020-10-15T05:02:02Z) - Learning Memory-guided Normality for Anomaly Detection [33.77435699029528]
We present an unsupervised learning approach to anomaly detection that considers the diversity of normal patterns explicitly.
We also present novel feature compactness and separateness losses to train the memory, boosting the discriminative power of both memory items and deeply learned features from normal data.
arXiv Detail & Related papers (2020-03-30T05:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.