論文の概要: Structuring Scientific Innovation: A Framework for Modeling and Discovering Impactful Knowledge Combinations
- arxiv url: http://arxiv.org/abs/2503.18865v1
- Date: Mon, 24 Mar 2025 16:41:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:30:54.025165
- Title: Structuring Scientific Innovation: A Framework for Modeling and Discovering Impactful Knowledge Combinations
- Title(参考訳): 科学的イノベーションを構造化する: インパクトのある知識の組み合わせをモデル化し発見するためのフレームワーク
- Authors: Junlan Chen, Kexin Zhang, Daifeng Li, Yangyang Feng, Yuxuan Zhang, Bowen Deng,
- Abstract要約: 本稿では,破壊的洞察の形成における手法の組み合わせの役割を強調する構造的アプローチを提案する。
歴史的に破壊的な手法の組み合わせを区別する特徴を識別するための、対照的な学習に基づくメカニズムを導入する。
本稿では,LLMのチェーン・オブ・シント機能を利用して,有望な知識の再結合を同定するモンテカルロ探索アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 8.652262434505955
- License:
- Abstract: The emergence of large language models offers new possibilities for structured exploration of scientific knowledge. Rather than viewing scientific discovery as isolated ideas or content, we propose a structured approach that emphasizes the role of method combinations in shaping disruptive insights. Specifically, we investigate how knowledge unit--especially those tied to methodological design--can be modeled and recombined to yield research breakthroughs.Our proposed framework addresses two key challenges. First, we introduce a contrastive learning-based mechanism to identify distinguishing features of historically disruptive method combinations within problem-driven contexts.Second, we propose a reasoning-guided Monte Carlo search algorithm that leverages the chain-of-thought capability of LLMs to identify promising knowledge recombinations for new problem statements.Empirical studies across multiple domains show that the framework is capable of modeling the structural dynamics of innovation and successfully highlights combinations with high disruptive potential.This research provides a new path for computationally guided scientific ideation grounded in structured reasoning and historical data modeling.
- Abstract(参考訳): 大規模言語モデルの出現は、科学的知識の構造化探索に新たな可能性をもたらす。
科学的な発見を孤立した考えや内容として見るのではなく、破壊的な洞察を形成する上での手法の組み合わせの重要性を強調する構造的アプローチを提案する。
具体的には,方法論設計に関連する知識,特に方法論設計に関連する知識をモデル化し,再結合して研究のブレークスルーをもたらす方法について検討する。
まず、問題駆動型文脈における歴史的破壊的メソッドの組み合わせの特徴を識別する対照的な学習機構を導入し、また、LLMのチェーン・オブ・シント能力を活用して、新しい問題文に対する有望な知識再結合を識別するモンテカルロ探索アルゴリズムを提案する。
関連論文リスト
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning [0.8192907805418583]
Chain-of-Associated-Thoughts (CoAT)フレームワークは、モンテカルロ木探索(MCTS)アルゴリズムと「連想記憶」と呼ばれる新しいキー情報を統合する動的メカニズムの革新的な相乗効果を導入している。
MCTSの構造的探索能力と連想記憶の適応学習能力を組み合わせることで、CoATはLLM検索空間を大幅に拡張し、多様な推論経路を探索し、その知識ベースをリアルタイムで動的に更新することを可能にする。
これらの実験により、我々のフレームワークは、精度、コヒーレンス、多様性に関する従来の推論プロセスより優れていることが示された。
論文 参考訳(メタデータ) (2025-02-04T15:10:33Z) - LLMs can Realize Combinatorial Creativity: Generating Creative Ideas via LLMs for Scientific Research [5.564972490390789]
本稿では,Large Language Models (LLM) を用いた創造性理論を明示的に実装するフレームワークを提案する。
このフレームワークは、クロスドメイン知識発見のための一般化レベル検索システムと、アイデア生成のための構造化プロセスを備えている。
OAG-Benchデータセットの実験は、我々のフレームワークの有効性を実証し、実際の研究成果と整合したアイデアを生成するためのベースラインアプローチを一貫して上回っている。
論文 参考訳(メタデータ) (2024-12-18T18:41:14Z) - Discovering emergent connections in quantum physics research via dynamic word embeddings [0.562479170374811]
概念結合予測のための動的単語埋め込みに基づく新しい手法を提案する。
知識グラフとは異なり,本手法は概念間の暗黙の関係を捉え,教師なしの方法で学習し,より広い範囲の情報を符号化する。
この表現は、科学文献における概念的関係をモデル化するための、より柔軟で情報的な方法を提供することを示唆している。
論文 参考訳(メタデータ) (2024-11-10T19:45:59Z) - Integrating Symbolic Neural Networks with Building Physics: A Study and Proposal [1.160352509486639]
Kolmogorov-Arnold Networks (KAN)のようなシンボリックニューラルネットワークは、事前知識とデータ駆動手法を統合する上で有望なアプローチを提供する。
本研究では, 予測モデリング, 知識発見, 連続学習に焦点をあて, 物理学構築におけるkanの適用について検討する。
論文 参考訳(メタデータ) (2024-10-20T08:30:19Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。