Structuring Scientific Innovation: A Framework for Modeling and Discovering Impactful Knowledge Combinations
- URL: http://arxiv.org/abs/2503.18865v3
- Date: Mon, 14 Apr 2025 14:52:38 GMT
- Title: Structuring Scientific Innovation: A Framework for Modeling and Discovering Impactful Knowledge Combinations
- Authors: Junlan Chen, Kexin Zhang, Daifeng Li, Yangyang Feng, Yuxuan Zhang, Bowen Deng,
- Abstract summary: We propose a structured approach that emphasizes the role of method combinations in shaping disruptive insights.<n>We introduce a contrastive learning-based mechanism to identify distinguishing features of historically disruptive method combinations.<n>Second, we propose a reasoning-guided Monte Carlo search algorithm that leverages the chain-of-thought capability of LLMs to identify promising knowledge recombinations.
- Score: 8.652262434505955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models offers new possibilities for structured exploration of scientific knowledge. Rather than viewing scientific discovery as isolated ideas or content, we propose a structured approach that emphasizes the role of method combinations in shaping disruptive insights. Specifically, we investigate how knowledge unit--especially those tied to methodological design--can be modeled and recombined to yield research breakthroughs. Our proposed framework addresses two key challenges. First, we introduce a contrastive learning-based mechanism to identify distinguishing features of historically disruptive method combinations within problem-driven contexts. Second, we propose a reasoning-guided Monte Carlo search algorithm that leverages the chain-of-thought capability of LLMs to identify promising knowledge recombinations for new problem statements.Empirical studies across multiple domains show that the framework is capable of modeling the structural dynamics of innovation and successfully highlights combinations with high disruptive potential. This research provides a new path for computationally guided scientific ideation grounded in structured reasoning and historical data modeling.
Related papers
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.<n>We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)<n>We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning [0.8192907805418583]
Chain-of-Associated-Thoughts (CoAT) framework introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'<n>By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time.<n>These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity.
arXiv Detail & Related papers (2025-02-04T15:10:33Z) - LLMs can Realize Combinatorial Creativity: Generating Creative Ideas via LLMs for Scientific Research [5.564972490390789]
We present a framework that explicitly implements creativity theory using Large Language Models (LLMs)<n>The framework features a generalization-level retrieval system for cross-domain knowledge discovery and a structured process for idea generation.<n>Experiments on the OAG-Bench dataset demonstrate our framework's effectiveness, consistently outperforming baseline approaches in generating ideas that align with real research developments.
arXiv Detail & Related papers (2024-12-18T18:41:14Z) - Discovering emergent connections in quantum physics research via dynamic word embeddings [0.562479170374811]
We introduce a novel approach based on dynamic word embeddings for concept combination prediction.
Unlike knowledge graphs, our method captures implicit relationships between concepts, can be learned in a fully unsupervised manner, and encodes a broader spectrum of information.
Our findings suggest that this representation offers a more flexible and informative way of modeling conceptual relationships in scientific literature.
arXiv Detail & Related papers (2024-11-10T19:45:59Z) - Integrating Symbolic Neural Networks with Building Physics: A Study and Proposal [1.160352509486639]
Symbolic neural networks, such as Kolmogorov-Arnold Networks (KAN), offer a promising approach for integrating prior knowledge with data-driven methods.
This study explores the application of KAN in building physics, focusing on predictive modeling, knowledge discovery, and continuous learning.
arXiv Detail & Related papers (2024-10-20T08:30:19Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
We propose a Bayesian generative model for incorporating prior domain knowledge into hierarchical topic modeling.
Our proposed model efficiently integrates the prior knowledge and improves both hierarchical topic discovery and document representation.
arXiv Detail & Related papers (2022-09-20T09:16:05Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.