Integrating Symbolic Neural Networks with Building Physics: A Study and Proposal
- URL: http://arxiv.org/abs/2411.00800v1
- Date: Sun, 20 Oct 2024 08:30:19 GMT
- Title: Integrating Symbolic Neural Networks with Building Physics: A Study and Proposal
- Authors: Xia Chen, Guoquan Lv, Xinwei Zhuang, Carlos Duarte, Stefano Schiavon, Philipp Geyer,
- Abstract summary: Symbolic neural networks, such as Kolmogorov-Arnold Networks (KAN), offer a promising approach for integrating prior knowledge with data-driven methods.
This study explores the application of KAN in building physics, focusing on predictive modeling, knowledge discovery, and continuous learning.
- Score: 1.160352509486639
- License:
- Abstract: Symbolic neural networks, such as Kolmogorov-Arnold Networks (KAN), offer a promising approach for integrating prior knowledge with data-driven methods, making them valuable for addressing inverse problems in scientific and engineering domains. This study explores the application of KAN in building physics, focusing on predictive modeling, knowledge discovery, and continuous learning. Through four case studies, we demonstrate KAN's ability to rediscover fundamental equations, approximate complex formulas, and capture time-dependent dynamics in heat transfer. While there are challenges in extrapolation and interpretability, we highlight KAN's potential to combine advanced modeling methods for knowledge augmentation, which benefits energy efficiency, system optimization, and sustainability assessments beyond the personal knowledge constraints of the modelers. Additionally, we propose a model selection decision tree to guide practitioners in appropriate applications for building physics.
Related papers
- A Survey on Kolmogorov-Arnold Network [0.0]
Review explores the theoretical foundations, evolution, applications, and future potential of Kolmogorov-Arnold Networks (KAN)
KANs distinguish themselves from traditional neural networks by using learnable, spline- parameterized functions instead of fixed activation functions.
This paper highlights KAN's role in modern neural architectures and outlines future directions to improve its computational efficiency, interpretability, and scalability in data-intensive applications.
arXiv Detail & Related papers (2024-11-09T05:54:17Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Can Kans (re)discover predictive models for Direct-Drive Laser Fusion? [11.261403205522694]
The domain of laser fusion presents a unique and challenging predictive modeling application landscape for machine learning methods.
Data-driven approaches have been successful in the past for achieving desired generalization ability and model interpretation that aligns with physics expectations.
In this work, we present the use of Kolmogorov-Arnold Networks (KANs) as an alternative to PIL for developing a new type of data-driven predictive model.
arXiv Detail & Related papers (2024-09-13T13:48:06Z) - KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics [0.0]
Kolmogorov-Arnold networks (KANs) are an alternative to multi-layer perceptrons (MLPs)
This work applies KANs as the backbone of a neural ordinary differential equation (ODE) framework.
arXiv Detail & Related papers (2024-07-05T00:38:49Z) - Physics-informed Generalizable Wireless Channel Modeling with
Segmentation and Deep Learning: Fundamentals, Methodologies, and Challenges [26.133092114053472]
We show that PINN-based approaches in channel modeling exhibit promising attributes such as generalizability, interpretability, and robustness.
A case-study of our recent work on precise indoor channel prediction with semantic segmentation and deep learning is presented.
arXiv Detail & Related papers (2024-01-02T16:56:13Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.