Toward building next-generation Geocoding systems: a systematic review
- URL: http://arxiv.org/abs/2503.18888v1
- Date: Mon, 24 Mar 2025 17:00:13 GMT
- Title: Toward building next-generation Geocoding systems: a systematic review
- Authors: Zhengcong Yin, Daniel W. Goldberg, Binbin Lin, Bing Zhou, Diya Li, Andong Ma, Ziqian Ming, Heng Cai, Zhe Zhang, Shaohua Wang, Shanzhen Gao, Joey Ying Lee, Xiao Li, Da Huo,
- Abstract summary: Geocoding systems are widely used in both scientific research for spatial analysis and everyday life through location-based services.<n>This review first examines the evolving requirements for geocoding inputs and outputs across various scenarios these systems must address.<n>It then provides a detailed analysis of how to construct such systems by breaking them down into key functional components.
- Score: 12.67966522328433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geocoding systems are widely used in both scientific research for spatial analysis and everyday life through location-based services. The quality of geocoded data significantly impacts subsequent processes and applications, underscoring the need for next-generation systems. In response to this demand, this review first examines the evolving requirements for geocoding inputs and outputs across various scenarios these systems must address. It then provides a detailed analysis of how to construct such systems by breaking them down into key functional components and reviewing a broad spectrum of existing approaches, from traditional rule-based methods to advanced techniques in information retrieval, natural language processing, and large language models. Finally, we identify opportunities to improve next-generation geocoding systems in light of recent technological advances.
Related papers
- GeoRAG: A Question-Answering Approach from a Geographical Perspective [3.243241445980849]
Geographic Question Answering (GeoQA) addresses natural language queries in geographic domains.
Traditional QA systems suffer from limited comprehension, low retrieval accuracy, weak interactivity, and inadequate handling of complex tasks.
This study presents GeoRAG, a knowledge-enhanced QA framework integrating domain-specific fine-tuning and prompt engineering.
arXiv Detail & Related papers (2025-04-02T08:11:05Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.
We propose a MLLM (OmniGeo) tailored to geospatial applications.
By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.<n>Recent research has focused on graph foundation models (GFMs)<n>GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - Self-supervised Learning for Geospatial AI: A Survey [21.504978593542354]
Self-supervised learning (SSL) has attracted increasing attention for its adoption in geospatial data.
This paper conducts a comprehensive and up-to-date survey of SSL techniques applied to or developed for three primary data (geometric) types prevalent in geospatial vector data.
arXiv Detail & Related papers (2024-08-22T05:28:22Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Roadmap on Signal Processing for Next Generation Measurement Systems [0.222020259427608]
Recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing.
This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems.
It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field.
arXiv Detail & Related papers (2021-11-03T19:39:34Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
Geosystems are geological formations altered by humans activities such as fossil energy exploration, waste disposal, geologic carbon sequestration, and renewable energy generation.
The responsible use and exploration of geosystems are thus critical to the geosystem governance, which in turn depends on the efficient monitoring, risk assessment, and decision support tools for practical implementation.
Fast advances in machine learning algorithms and novel sensing technologies in recent years have presented new opportunities for the subsurface research community to improve the efficacy and transparency of geosystem governance.
arXiv Detail & Related papers (2021-04-10T13:40:22Z) - Deep Learning Techniques for Geospatial Data Analysis [0.0]
Consumer electronic devices are continuously generating a vast amount of location enriched data called geospatial data.
In recent times, many useful civilian applications have been designed and deployed around such geospatial data.
Recent advances in the field of deep learning techniques showed that Neural Network-based techniques outperform conventional machine learning techniques.
arXiv Detail & Related papers (2020-08-30T11:51:10Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
We provide a comprehensive survey, and propose a new taxonomy for localization and mapping using deep learning.
A wide range of topics are covered, from learning odometry estimation, mapping, to global localization and simultaneous localization and mapping.
It is our hope that this work can connect emerging works from robotics, computer vision and machine learning communities.
arXiv Detail & Related papers (2020-06-22T19:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.