MedAgent-Pro: Towards Multi-modal Evidence-based Medical Diagnosis via Reasoning Agentic Workflow
- URL: http://arxiv.org/abs/2503.18968v1
- Date: Fri, 21 Mar 2025 14:04:18 GMT
- Title: MedAgent-Pro: Towards Multi-modal Evidence-based Medical Diagnosis via Reasoning Agentic Workflow
- Authors: Ziyue Wang, Junde Wu, Chang Han Low, Yueming Jin,
- Abstract summary: Multi-modal Large Language Models (MLLMs) have gained significant attention and achieved success across various domains.<n>They lack detailed perception of visual inputs, limiting their ability to perform quantitative image analysis.<n>We propose MedAgent-Pro, an evidence-based reasoning agentic system designed to achieve reliable, explainable, and precise medical diagnoses.
- Score: 16.089816031251335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing reliable AI systems to assist human clinicians in multi-modal medical diagnosis has long been a key objective for researchers. Recently, Multi-modal Large Language Models (MLLMs) have gained significant attention and achieved success across various domains. With strong reasoning capabilities and the ability to perform diverse tasks based on user instructions, they hold great potential for enhancing medical diagnosis. However, directly applying MLLMs to the medical domain still presents challenges. They lack detailed perception of visual inputs, limiting their ability to perform quantitative image analysis, which is crucial for medical diagnostics. Additionally, MLLMs often exhibit hallucinations and inconsistencies in reasoning, whereas clinical diagnoses must adhere strictly to established criteria. To address these challenges, we propose MedAgent-Pro, an evidence-based reasoning agentic system designed to achieve reliable, explainable, and precise medical diagnoses. This is accomplished through a hierarchical workflow: at the task level, knowledge-based reasoning generate reliable diagnostic plans for specific diseases following retrieved clinical criteria. While at the case level, multiple tool agents process multi-modal inputs, analyze different indicators according to the plan, and provide a final diagnosis based on both quantitative and qualitative evidence. Comprehensive experiments on both 2D and 3D medical diagnosis tasks demonstrate the superiority and effectiveness of MedAgent-Pro, while case studies further highlight its reliability and interpretability. The code is available at https://github.com/jinlab-imvr/MedAgent-Pro.
Related papers
- TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.
Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.
We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
Large Language Models (LLMs) face significant challenges in medical question answering.<n>We propose a novel approach incorporating similar case generation within a multi-agent medical question-answering system.<n>Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data.
arXiv Detail & Related papers (2024-12-31T19:55:45Z) - MedCoT: Medical Chain of Thought via Hierarchical Expert [48.91966620985221]
This paper presents MedCoT, a novel hierarchical expert verification reasoning chain method.<n>It is designed to enhance interpretability and accuracy in biomedical imaging inquiries.<n> Experimental evaluations on four standard Med-VQA datasets demonstrate that MedCoT surpasses existing state-of-the-art approaches.
arXiv Detail & Related papers (2024-12-18T11:14:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQA is a comprehensive benchmark in the field of medical specialization.
This work introduces RJUA-MedDQA, a comprehensive benchmark in the field of medical specialization.
arXiv Detail & Related papers (2024-02-19T06:57:02Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
We propose a framework to model the diagnosis process in the real world by adaptively fusing probability distributions of agents over potential diseases.
Our approach requires significantly less parameter updating and training time, enhancing efficiency and practical utility.
arXiv Detail & Related papers (2024-01-29T12:25:30Z) - "My nose is running.""Are you also coughing?": Building A Medical
Diagnosis Agent with Interpretable Inquiry Logics [80.55587329326046]
We propose a more interpretable decision process to implement the dialogue manager of DSMD.
We devise a model with highly transparent components to conduct the inference.
Experiments show that our method obtains 7.7%, 10.0%, 3.0% absolute improvement in diagnosis accuracy.
arXiv Detail & Related papers (2022-04-29T09:02:23Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.