LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning
- URL: http://arxiv.org/abs/2503.18985v2
- Date: Mon, 31 Mar 2025 12:47:09 GMT
- Title: LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning
- Authors: Xuan Liu, Xiaobin Chang,
- Abstract summary: We introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks.<n>Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
- Score: 5.438329886561997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
Related papers
- SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising paradigm to exploit abundant knowledge acquired during pre-training for tackling sequential tasks.<n>Existing prompt-based and Low-Rank Adaptation-based (LoRA-based) methods often require expanding a prompt/LoRA pool or retaining samples of previous tasks.<n>We propose Scalable Decoupled LoRA (SD-LoRA) for class incremental learning, which continually separates the learning of the magnitude and direction of LoRA components without rehearsal.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.
Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.
We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - Dual Low-Rank Adaptation for Continual Learning with Pre-Trained Models [38.97142043836567]
Continual learning (CL) aims to enable vision transformers (ViTs) to learn new tasks over time.
catastrophic forgetting remains a persistent challenge.
We propose a novel PEFT-CL method called Dual Low-Rank Adaptation (DualLoRA)
arXiv Detail & Related papers (2024-11-01T14:28:39Z) - Large Continual Instruction Assistant [59.585544987096974]
Continual Instruction Tuning (CIT) is adopted to instruct Large Models to follow human intent data by data.
Existing update gradient would heavily destroy the performance on previous datasets during CIT process.
We propose a general continual instruction tuning framework to address the challenge.
arXiv Detail & Related papers (2024-10-08T11:24:59Z) - TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation [10.628870775939161]
This paper addresses the limitations of current few-shot semantic segmentation by exploiting the temporal continuity of LiDAR data.
We employ a tracking model to generate pseudo-ground-truths from a sequence of LiDAR frames, enhancing the dataset's ability to learn on novel classes.
We incorporate LoRA, a technique that reduces the number of trainable parameters, thereby preserving the model's performance on base classes while improving its adaptability to novel classes.
arXiv Detail & Related papers (2024-08-28T09:18:36Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
This paper analyzes that this insufficiency arises from the ineffective handling of outliers.
We propose a Robust Continual Learning (RCL) method to address this issue.
The proposed method effectively maintains robustness and achieves new state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2024-05-27T11:21:26Z) - Overcoming Domain Drift in Online Continual Learning [24.86094018430407]
Online Continual Learning (OCL) empowers machine learning models to acquire new knowledge online across a sequence of tasks.
OCL faces a significant challenge: catastrophic forgetting, wherein the model learned in previous tasks is substantially overwritten upon encountering new tasks.
We propose a novel rehearsal strategy, Drift-Reducing Rehearsal (DRR), to anchor the domain of old tasks and reduce the negative transfer effects.
arXiv Detail & Related papers (2024-05-15T06:57:18Z) - InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning [12.004172212239848]
Continual learning requires the model to learn multiple tasks sequentially.
In this work, we propose a new PEFT method, called interference-free low-rank adaptation (InfLoRA) for continual learning.
arXiv Detail & Related papers (2024-03-30T03:16:37Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning [93.90047628101155]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.<n>To address this, some methods propose replaying data from previous tasks during new task learning.<n>However, it is not expected in practice due to memory constraints and data privacy issues.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.