TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation
- URL: http://arxiv.org/abs/2408.15657v1
- Date: Wed, 28 Aug 2024 09:18:36 GMT
- Title: TeFF: Tracking-enhanced Forgetting-free Few-shot 3D LiDAR Semantic Segmentation
- Authors: Junbao Zhou, Jilin Mei, Pengze Wu, Liang Chen, Fangzhou Zhao, Xijun Zhao, Yu Hu,
- Abstract summary: This paper addresses the limitations of current few-shot semantic segmentation by exploiting the temporal continuity of LiDAR data.
We employ a tracking model to generate pseudo-ground-truths from a sequence of LiDAR frames, enhancing the dataset's ability to learn on novel classes.
We incorporate LoRA, a technique that reduces the number of trainable parameters, thereby preserving the model's performance on base classes while improving its adaptability to novel classes.
- Score: 10.628870775939161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In autonomous driving, 3D LiDAR plays a crucial role in understanding the vehicle's surroundings. However, the newly emerged, unannotated objects presents few-shot learning problem for semantic segmentation. This paper addresses the limitations of current few-shot semantic segmentation by exploiting the temporal continuity of LiDAR data. Employing a tracking model to generate pseudo-ground-truths from a sequence of LiDAR frames, our method significantly augments the dataset, enhancing the model's ability to learn on novel classes. However, this approach introduces a data imbalance biased to novel data that presents a new challenge of catastrophic forgetting. To mitigate this, we incorporate LoRA, a technique that reduces the number of trainable parameters, thereby preserving the model's performance on base classes while improving its adaptability to novel classes. This work represents a significant step forward in few-shot 3D LiDAR semantic segmentation for autonomous driving. Our code is available at https://github.com/junbao-zhou/Track-no-forgetting.
Related papers
- FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce two novel components: the Redundant Feature Eliminator (RFE) and the Spatial Noise Compensator (SNC)
Considering the imbalance in existing 3D datasets, we also propose new evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks.
We show, for the first time, that general representations learning can be achieved through the task of occupancy prediction.
Our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
arXiv Detail & Related papers (2023-09-19T11:13:01Z) - LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels [50.40632021583213]
We propose synthesizing additional LiDAR point clouds from novel viewpoints without physically driving at dangerous positions.
We train a deep learning model, which takes a LiDAR scan as input and predicts the future trajectory as output.
A waypoint controller is then applied to this predicted trajectory to determine the throttle and steering labels of the ego-vehicle.
arXiv Detail & Related papers (2023-08-02T20:46:43Z) - Few-shot 3D LiDAR Semantic Segmentation for Autonomous Driving [3.0033590064167317]
We propose a few-shot 3D LiDAR semantic segmentation method that predicts both novel classes and base classes simultaneously.
Our method tries to solve the background ambiguity problem in generalized few-shot semantic segmentation.
arXiv Detail & Related papers (2023-02-17T09:52:36Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions.
We propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy.
We design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications.
arXiv Detail & Related papers (2023-01-03T06:47:31Z) - LWSIS: LiDAR-guided Weakly Supervised Instance Segmentation for
Autonomous Driving [34.119642131912485]
We present a more artful framework, LiDAR-guided Weakly Supervised Instance (LWSIS)
LWSIS uses the off-the-shelf 3D data, i.e., Point Cloud, together with the 3D boxes, as natural weak supervisions for training the 2D image instance segmentation models.
Our LWSIS not only exploits the complementary information in multimodal data during training, but also significantly reduces the cost of the dense 2D masks.
arXiv Detail & Related papers (2022-12-07T08:08:01Z) - Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation [23.666607237164186]
We propose a novel deep neural network exploiting both spatial-temporal information and different representation modalities of LiDAR scans to improve LiDAR-MOS performance.
Specifically, we first use a range image-based dual-branch structure to separately deal with spatial and temporal information.
We also use a point refinement module via 3D sparse convolution to fuse the information from both LiDAR range image and point cloud representations.
arXiv Detail & Related papers (2022-07-05T17:59:17Z) - COLA: COarse LAbel pre-training for 3D semantic segmentation of sparse
LiDAR datasets [3.8243923744440926]
Transfer learning is a proven technique in 2D computer vision to leverage the large amount of data available and achieve high performance.
In this work, we tackle the case of real-time 3D semantic segmentation of sparse autonomous driving LiDAR scans.
We introduce a new pre-training task: coarse label pre-training, also called COLA.
arXiv Detail & Related papers (2022-02-14T17:19:23Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.