論文の概要: Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism Co-Optimization
- arxiv url: http://arxiv.org/abs/2503.19050v1
- Date: Mon, 24 Mar 2025 18:21:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:54:26.244520
- Title: Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism Co-Optimization
- Title(参考訳): Mist: メモリ並列化による大規模言語モデルの効率的な分散トレーニング
- Authors: Zhanda Zhu, Christina Giannoula, Muralidhar Andoorveedu, Qidong Su, Karttikeya Mangalam, Bojian Zheng, Gennady Pekhimenko,
- Abstract要約: 本稿では,メモリ,オーバーラップ,不均衡を考慮した自動分散トレーニングシステムであるMistを提案する。
Mistは、最先端手動システムMegatron-LMや最先端自動システムAcesoと比較して平均1.28$times$(最大1.73$times$)の高速化を実現している。
- 参考スコア(独自算出の注目度): 11.223375172715722
- License:
- Abstract: Various parallelism, such as data, tensor, and pipeline parallelism, along with memory optimizations like activation checkpointing, redundancy elimination, and offloading, have been proposed to accelerate distributed training for Large Language Models. To find the best combination of these techniques, automatic distributed training systems are proposed. However, existing systems only tune a subset of optimizations, due to the lack of overlap awareness, inability to navigate the vast search space, and ignoring the inter-microbatch imbalance, leading to sub-optimal performance. To address these shortcomings, we propose Mist, a memory, overlap, and imbalance-aware automatic distributed training system that comprehensively co-optimizes all memory footprint reduction techniques alongside parallelism. Mist is based on three key ideas: (1) fine-grained overlap-centric scheduling, orchestrating optimizations in an overlapped manner, (2) symbolic-based performance analysis that predicts runtime and memory usage using symbolic expressions for fast tuning, and (3) imbalance-aware hierarchical tuning, decoupling the process into an inter-stage imbalance and overlap aware Mixed Integer Linear Programming problem and an intra-stage Dual-Objective Constrained Optimization problem, and connecting them through Pareto frontier sampling. Our evaluation results show that Mist achieves an average of 1.28$\times$ (up to 1.73$\times$) and 1.27$\times$ (up to 2.04$\times$) speedup compared to state-of-the-art manual system Megatron-LM and state-of-the-art automatic system Aceso, respectively.
- Abstract(参考訳): データ、テンソル、パイプライン並列化などの並列処理や、アクティベーションチェックポイント、冗長性排除、オフロードといったメモリ最適化は、大規模言語モデルの分散トレーニングを加速するために提案されている。
これらの手法の最適組み合わせを見つけるために,自動分散学習システムを提案する。
しかし、既存のシステムは、重複認識の欠如、広大な検索空間をナビゲートできないこと、マイクロバッチ間の不均衡を無視しているため、最適化のサブセットを調整しているだけである。
これらの欠点に対処するため、並列処理と並行してメモリフットプリント削減技術をすべて包括的に最適化するメモリ、オーバーラップ、不均衡を考慮した自動分散トレーニングシステムであるMistを提案する。
Mistは,(1)微粒なオーバーラップ集中スケジューリング,(2)高速チューニングのためのシンボリック式を用いた実行時およびメモリ使用量の予測,(3)非バランスな階層的チューニング,プロセスの段階間不均衡化と重複認識への分離,および2段階のDual-Objective Constrained Optimization問題,およびParetoフロンティアサンプリングによる相互接続という,3つの重要なアイデアに基づいている。
評価の結果,Mistは平均1.28$\times$(最大1.73$\times$)と1.27$\times$(最大2.04$\times$)の高速化を実現している。
関連論文リスト
- Efficient Adaptive Optimization via Subset-Norm and Subspace-Momentum: Fast, Memory-Reduced Training with Convergence Guarantees [5.399838579600896]
本稿では,メモリ最適化のための2つの補完手法を提案する。
1つのテクニックであるSubset-Normは、運動量状態のメモリフットプリントを低次元のサブスペースで削減する。
別の手法であるSubspace-Momentumは、運動量状態のメモリフットプリントを低次元のサブスペースで削減する。
論文 参考訳(メタデータ) (2024-11-11T16:48:07Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - A Convex-optimization-based Layer-wise Post-training Pruner for Large Language Models [24.185245582500876]
本稿では,凸最適化モデルとアルゴリズムに基づく最初のポストトレーニングプルーナであるFISTAPrunerを紹介する。
FISTAPrunerは層内累積誤差補正機構を搭載し、並列プルーニングをサポートする。
OPT, LLaMA, LLaMA-2, LLaMA-3 などのモデルにおける FISTAPruner の評価を行った。
論文 参考訳(メタデータ) (2024-08-07T12:33:46Z) - Parm: Efficient Training of Large Sparsely-Activated Models with Dedicated Schedules [15.680276212483292]
本稿では,MP+EP+ESP学習を高速化するParmを提案する。
Parmは、1.13$times$から5.77$times$のスピードアップを実現し、1296年に手動で設定されたMoEレイヤと、2つの現実世界のMoEモデルで約3$times$の改善を行った。
論文 参考訳(メタデータ) (2024-06-30T05:55:11Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - Efficient Methods for Non-stationary Online Learning [61.63338724659592]
本稿では, 動的後悔と適応的後悔を最適化する効率的な手法を提案し, ラウンド当たりの投影回数を$mathcalO(log T)$から$ $1$まで削減した。
また、さらに強化された測度、すなわち「インターバル・ダイナミック・リピート」を研究し、ラウンド当たりの射影数を$mathcalO(log2 T)$から$$$$に減らした。
論文 参考訳(メタデータ) (2023-09-16T07:30:12Z) - Improving Automatic Parallel Training via Balanced Memory Workload
Optimization [36.87527680184956]
トランスフォーマーモデルは、様々なアプリケーションドメインで最先端のパフォーマンスを達成するための主要なアプローチとして現れています。
本稿では,複数の並列性を持つ次元を統合し,最も効率的なハイブリッド並列性戦略を自動的に識別する新しいシステムフレームワークであるGalvatron-BMWを提案する。
異なるTransformerモデルを用いた評価では,Galvatron-BMWがGPUメモリ制約の異なる分散トレーニングを自動化できることが示されている。
論文 参考訳(メタデータ) (2023-07-05T05:28:38Z) - Fine-Tuning Language Models with Just Forward Passes [92.04219196752007]
微調整言語モデル(LM)は、様々な下流タスクで成功したが、LMのサイズが大きくなるにつれて、バックプロパゲーションは大量のメモリを必要とする。
本稿では,メモリ効率の高いゼロソーダ(MeZO)を提案する。
論文 参考訳(メタデータ) (2023-05-27T02:28:10Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
冗長な再計算とアウト・オブ・コアの手法を組み合わせた戦略を提案する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
論文 参考訳(メタデータ) (2020-08-26T07:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。