Quantum Space, Quantum Time, and Relativistic Quantum Mechanics
- URL: http://arxiv.org/abs/2004.09139v2
- Date: Sun, 16 Jan 2022 19:38:46 GMT
- Title: Quantum Space, Quantum Time, and Relativistic Quantum Mechanics
- Authors: Ashmeet Singh
- Abstract summary: We treat space and time as quantum degrees of freedom on an equal footing in Hilbert space.
Motivated by considerations in quantum gravity, we focus on a paradigm dealing with linear, first-order translations Hamiltonian and momentum constraints.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We treat space and time as bona fide quantum degrees of freedom on an equal
footing in Hilbert space. Motivated by considerations in quantum gravity, we
focus on a paradigm dealing with linear, first-order Hamiltonian and momentum
constraints that lead to emergent features of temporal and spatial
translations. Unlike the conventional treatment, we show that Klein-Gordon and
Dirac equations in relativistic quantum mechanics can be unified in our
paradigm by applying relativistic dispersion relations to eigenvalues rather
than treating them as operator-valued equations. With time and space being
treated on an equal footing in Hilbert space, we show symmetry transformations
to be implemented by unitary basis changes in Hilbert space, giving them a
stronger quantum mechanical footing. Global symmetries, such as Lorentz
transformations, modify the decomposition of Hilbert space; and local
symmetries, such as $U(1)$ gauge symmetry are diagonal in coordinate basis and
do not alter the decomposition of Hilbert space. We briefly discuss extensions
of this paradigm to quantum field theory and quantum gravity.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Spacetime quantum and classical mechanics with dynamical foliation [0.0]
We extend the time choice of the Legendre transform to a dynamical variable.
A canonical-like quantization of the formalism is then presented in which the fields satisfy spacetime commutation relations.
The problem of establishing a correspondence between the new noncausal framework and conventional QM is solved through a generalization of spacelike correlators to spacetime.
arXiv Detail & Related papers (2023-11-11T05:51:21Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Quantum conformal symmetries for spacetimes in superposition [0.0]
We build an explicit quantum operator that can map states describing a quantum field on a superposition of spacetimes to states representing a quantum field with a superposition of masses on a Minkowski background.
It can be used to import the phenomenon of particle production in curved spacetime to its conformally equivalent counterpart, thus revealing new features in modified Minkowski spacetime.
arXiv Detail & Related papers (2022-06-30T18:00:02Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Reformulation of Quantum Theory [0.0]
The standard quantum mechanics over a complex Hilbert space, is a Hamiltonian mechanics, regarding the Hilbert space as a linear real manifold equipped with its canonical symplectic form and restricting only to the expectation-value functions of Hermitian operators.
We reformulate the structure of quantum mechanics in the language of symplectic manifold and avoid linear structure of Hilbert space in such a way that the results can be stated for an arbitrary symplectic manifold.
arXiv Detail & Related papers (2022-01-03T17:15:35Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Projection Hypothesis from the von Neumann-type Interaction with a
Bose-Einstein Condensate [0.0]
We derive the projection hypothesis in projective quantum measurement by restricting the set of observables.
The key steps in the derivation are the return of the symmetry translation of this quantum coordinate to the inverse translation of the c-number spatial coordinate in quantum field theory.
arXiv Detail & Related papers (2020-12-03T13:05:36Z) - Phase space trajectories in quantum mechanics [0.0]
An adapted representation of quantum mechanics sheds new light on the relationship between quantum states and classical states.
In this approach the space of quantum states splits into a product of the state space of classical mechanics and a Hilbert space.
arXiv Detail & Related papers (2020-08-27T06:26:21Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.