論文の概要: MARS: Memory-Enhanced Agents with Reflective Self-improvement
- arxiv url: http://arxiv.org/abs/2503.19271v1
- Date: Tue, 25 Mar 2025 02:05:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:52:12.021075
- Title: MARS: Memory-Enhanced Agents with Reflective Self-improvement
- Title(参考訳): MARS: 反射型自己改善型記憶増強剤
- Authors: Xuechen Liang, Meiling Tao, Yinghui Xia, Jianhui Wang, Kun Li, Yijin Wang, Jingsong Yang, Tianyu Shi, Yuantao Wang, Miao Zhang, Xueqian Wang,
- Abstract要約: 本稿では,リフレクティブ自己改善型メモリ強化エージェントを提案する。
フレームワークは、User、Assistant、Checkerの3つのエージェントで構成されている。
- 参考スコア(独自算出の注目度): 18.974715067869877
- License:
- Abstract: Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making, lack of long-term memory, and limited context windows in dynamic environments. To address these issues, this paper proposes an innovative framework Memory-Enhanced Agents with Reflective Self-improvement. The MARS framework comprises three agents: the User, the Assistant, and the Checker. By integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents capabilities in handling multi-tasking and long-span information.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げているが、継続的な意思決定、長期記憶の欠如、動的環境における限られたコンテキストウィンドウといった課題に直面している。
これらの課題に対処するために,リフレクティブ自己改善を伴うメモリ強化エージェントの革新的フレームワークを提案する。
MARSフレームワークは、User、Assistant、Checkerの3つのエージェントで構成される。
繰り返しフィードバック、反射機構、エビングハウスの忘れ曲線に基づくメモリ最適化機構を統合することにより、マルチタスクや長期情報の処理におけるエージェント機能を大幅に強化する。
関連論文リスト
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
現在のディープラーニングメモリモデルは、部分的に観察可能で長期にわたる強化学習環境で苦労している。
本稿では,強化学習エージェントのための新しい記憶モデルであるStable Hadamard Memoryを紹介する。
我々の手法は、部分的に観測可能なベンチマークに挑戦する上で、最先端のメモリベースの手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T03:50:17Z) - Self-evolving Agents with reflective and memory-augmented abilities [8.123272461141815]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げてきたが、それでも継続的意思決定のような課題に直面している。
本稿では, 繰り返しフィードバック, 反射機構, およびEbbinghaus forgetting curveに基づくメモリ最適化機構を統合することで, 新たなフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-01T23:36:34Z) - QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism [46.441032033076034]
メモリメカニズムは、長いコンテキストを管理するための柔軟なソリューションを提供する。
本稿では,二重構造メモリプールを組み込んだ新しい手法であるQRMeMを提案する。
マルチチョイス質問 (MCQ) とマルチドキュメント質問応答 (Multi-doc QA) のベンチマークによる評価では,既存手法と比較してQRMeMの性能が向上している。
論文 参考訳(メタデータ) (2024-06-19T02:46:18Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
大規模言語モデル(LLM)に基づくエージェントは、最近、研究や産業コミュニティから多くの注目を集めている。
LLMベースのエージェントは、現実の問題を解決する基礎となる自己進化能力に特徴付けられる。
エージェント-環境相互作用をサポートする重要なコンポーネントは、エージェントのメモリである。
論文 参考訳(メタデータ) (2024-04-21T01:49:46Z) - Memory Sharing for Large Language Model based Agents [43.53494041932615]
本稿では,リアルタイムメモリフィルタ,ストレージ,検索を統合し,In-Context学習プロセスを強化するためのフレームワークであるMemory Sharingを紹介する。
実験の結果,MSフレームワークはオープンな質問に対処する際のエージェントの性能を大幅に改善することが示された。
論文 参考訳(メタデータ) (2024-04-15T17:57:30Z) - Empowering Working Memory for Large Language Model Agents [9.83467478231344]
本稿では,認知心理学のワーキングメモリフレームワークを大規模言語モデル(LLM)に適用する可能性について検討する。
エピソード間の記憶を維持するために、集中型ワーキングメモリハブとエピソディックバッファアクセスを取り入れた革新的なモデルが提案されている。
このアーキテクチャは、複雑なタスクと協調シナリオの間のニュアンス付きコンテキスト推論に対して、より継続的なものを提供することを目的としている。
論文 参考訳(メタデータ) (2023-12-22T05:59:00Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
大きな言語モデル(LLM)は、長い入力を処理できないため、重要な歴史的情報が失われる。
本稿では,LLMが長期記憶を維持し,関連する情報をリコールする能力を高めるための自己制御メモリ(SCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-26T07:25:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。