論文の概要: ISPDiffuser: Learning RAW-to-sRGB Mappings with Texture-Aware Diffusion Models and Histogram-Guided Color Consistency
- arxiv url: http://arxiv.org/abs/2503.19283v1
- Date: Tue, 25 Mar 2025 02:29:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:55:39.047988
- Title: ISPDiffuser: Learning RAW-to-sRGB Mappings with Texture-Aware Diffusion Models and Histogram-Guided Color Consistency
- Title(参考訳): ISPDiffuser: テクスチャ認識拡散モデルによるRAW-to-SRGBマッピングの学習とヒストグラム誘導色一貫性
- Authors: Yang Ren, Hai Jiang, Menglong Yang, Wei Li, Shuaicheng Liu,
- Abstract要約: RAW-to-sRGBマッピングは、スマートフォンセンサーが捉えた生データから、DSLR品質のsRGB画像を生成することを目的としている。
ISPDiffuserは、RAW-to-sRGBマッピングをグレースケール空間の詳細な再構成に分離する拡散ベースのフレームワークである。
ISPDiffuserは、最先端の競合製品よりも量的にも視覚的にも優れている。
- 参考スコア(独自算出の注目度): 32.05482995863444
- License:
- Abstract: RAW-to-sRGB mapping, or the simulation of the traditional camera image signal processor (ISP), aims to generate DSLR-quality sRGB images from raw data captured by smartphone sensors. Despite achieving comparable results to sophisticated handcrafted camera ISP solutions, existing learning-based methods still struggle with detail disparity and color distortion. In this paper, we present ISPDiffuser, a diffusion-based decoupled framework that separates the RAW-to-sRGB mapping into detail reconstruction in grayscale space and color consistency mapping from grayscale to sRGB. Specifically, we propose a texture-aware diffusion model that leverages the generative ability of diffusion models to focus on local detail recovery, in which a texture enrichment loss is further proposed to prompt the diffusion model to generate more intricate texture details. Subsequently, we introduce a histogram-guided color consistency module that utilizes color histogram as guidance to learn precise color information for grayscale to sRGB color consistency mapping, with a color consistency loss designed to constrain the learned color information. Extensive experimental results show that the proposed ISPDiffuser outperforms state-of-the-art competitors both quantitatively and visually. The code is available at https://github.com/RenYangSCU/ISPDiffuser.
- Abstract(参考訳): RAW-to-sRGBマッピング(英: RAW-to-sRGB mapping)または従来のカメラ画像信号処理装置(ISP)のシミュレーションは、スマートフォンセンサーが捉えた生データから、DSLR品質のsRGB画像を生成することを目的としている。
高度な手作りカメラISPソリューションに匹敵するものの、既存の学習ベースの方法は細部の違いや色歪みに苦慮している。
本稿では,拡散型疎結合フレームワークであるISPDiffuserについて,RAW-to-sRGBマッピングをグレースケール空間における詳細再構成と,グレースケールからsRGBへのカラー一貫性マッピングに分離する。
具体的には,拡散モデルの生成能力を活用して局所的な詳細回復に焦点をあてるテクスチャ認識拡散モデルを提案する。
その後、カラーヒストグラムを用いた色整合性モジュールを導入し、グレースケールからsRGB色整合性マッピングのための正確な色情報を学習し、学習した色情報を制約するために色整合性損失を設計する。
実験結果から,ISPDiffuser は最先端の競合相手よりも定量的に,視覚的にも優れていたことが示唆された。
コードはhttps://github.com/RenYangSCU/ISPDiffuser.comで入手できる。
関連論文リスト
- RAW-Diffusion: RGB-Guided Diffusion Models for High-Fidelity RAW Image Generation [4.625376287612609]
RGB画像でガイドされたRAW画像を生成するための新しい拡散法を提案する。
このアプローチは高忠実度RAW画像を生成し、カメラ固有のRAWデータセットの作成を可能にする。
提案手法を拡張してBDD100K-RAWとCityscapes-RAWデータセットを作成し,RAW画像におけるオブジェクト検出の有効性を明らかにする。
論文 参考訳(メタデータ) (2024-11-20T09:40:12Z) - Enhancing RAW-to-sRGB with Decoupled Style Structure in Fourier Domain [27.1716081216131]
現在の方法では、携帯電話のRAW画像とDSLRカメラのRGB画像の違いを無視する。
本稿では、新しいNeural ISPフレームワーク、FourierISPを紹介する。
このアプローチは、画像を周波数領域内のスタイルと構造に分解し、独立した最適化を可能にする。
論文 参考訳(メタデータ) (2024-01-04T09:18:31Z) - Image Demoireing in RAW and sRGB Domains [18.921026683632146]
我々は、Gated Feedback Module (GFM) と Frequency Selection Module (FSM) を備えたスキップ接続型復号モジュール(SCDM)を開発した。
我々はRGB Guided ISP(RGISP)を設計し、デバイス依存のISPを学習し、色回復のプロセスを支援する。
我々のRRIDは、PSNRでは0.62dB、SSIMでは0.003のモアレパターン除去とカラーキャスト補正の性能において、最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-12-14T16:00:28Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
カラー誘導DSRのためのSymmetric Uncertainty-aware Feature Transmission (SUFT)を提案する。
本手法は最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T06:35:59Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
本稿では,AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstructionを紹介する。
我々は,メタデータを使わずにRGBから生のセンサイメージを回収し,ISP変換を「逆」することを目的としている。
論文 参考訳(メタデータ) (2022-10-20T10:43:53Z) - Learning sRGB-to-Raw-RGB De-rendering with Content-Aware Metadata [46.28281823015191]
我々は,サンプリングと再構築を共同で学習することで,デレンダリングの結果を改善する方法を示す。
実験の結果,既存の手法よりも画像内容に適応し,生の再現性を向上できることがわかった。
論文 参考訳(メタデータ) (2022-06-03T20:43:17Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
本稿では,スマートフォンが取得したRAW画像に基づいて,DSLRの品質画像を生成する訓練可能な画像信号処理フレームワークを提案する。
トレーニング画像ペア間の色ずれに対処するために、カラー条件ISPネットワークを使用し、各入力RAWと基準DSLR画像間の新しいパラメトリック色マッピングを最適化する。
論文 参考訳(メタデータ) (2022-03-20T20:13:59Z) - Model-Based Image Signal Processors via Learnable Dictionaries [6.766416093990318]
デジタルカメラは画像信号処理装置(ISP)を用いてRAW読み出しをRGB画像に変換する
近年のアプローチでは、RGBからRAWマッピングを推定することで、このギャップを埋めようとしている。
本稿では,学習可能かつ解釈可能なハイブリッド・モデルベースかつデータ駆動型ISPを提案する。
論文 参考訳(メタデータ) (2022-01-10T08:36:10Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
本稿では,画像アライメントとRAW-to-sRGBマッピングのための共同学習モデルを提案する。
実験の結果,本手法はZRRおよびSR-RAWデータセットの最先端に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2021-08-18T12:41:36Z) - Semantic-embedded Unsupervised Spectral Reconstruction from Single RGB
Images in the Wild [48.44194221801609]
この課題に対処するため、我々は、新しい軽量でエンドツーエンドの学習ベースのフレームワークを提案する。
我々は、効率的なカメラスペクトル応答関数推定により、検索されたHS画像から入力されたRGB画像と再投影されたRGB画像の差を徐々に広げる。
提案手法は最先端の教師なし手法よりも優れており,いくつかの設定下では最新の教師付き手法よりも優れている。
論文 参考訳(メタデータ) (2021-08-15T05:19:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。