E-PINNs: Epistemic Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2503.19333v1
- Date: Tue, 25 Mar 2025 03:53:28 GMT
- Title: E-PINNs: Epistemic Physics-Informed Neural Networks
- Authors: Ashish S. Nair, Bruno Jacob, Amanda A. Howard, Jan Drgona, Panos Stinis,
- Abstract summary: Physics-informed neural networks (PINNs) have demonstrated promise as a framework for solving forward and inverse problems involving partial differential equations.<n>We propose Epistemic Physics-Informed Neural Networks (E-PINNs) to efficiently quantify uncertainty in PINNs.
- Score: 0.8796261172196743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have demonstrated promise as a framework for solving forward and inverse problems involving partial differential equations. Despite recent progress in the field, it remains challenging to quantify uncertainty in these networks. While approaches such as Bayesian PINNs (B-PINNs) provide a principled approach to capturing uncertainty through Bayesian inference, they can be computationally expensive for large-scale applications. In this work, we propose Epistemic Physics-Informed Neural Networks (E-PINNs), a framework that leverages a small network, the \emph{epinet}, to efficiently quantify uncertainty in PINNs. The proposed approach works as an add-on to existing, pre-trained PINNs with a small computational overhead. We demonstrate the applicability of the proposed framework in various test cases and compare the results with B-PINNs using Hamiltonian Monte Carlo (HMC) posterior estimation and dropout-equipped PINNs (Dropout-PINNs). Our experiments show that E-PINNs provide similar coverage to B-PINNs, with often comparable sharpness, while being computationally more efficient. This observation, combined with E-PINNs' more consistent uncertainty estimates and better calibration compared to Dropout-PINNs for the examples presented, indicates that E-PINNs offer a promising approach in terms of accuracy-efficiency trade-off.
Related papers
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
Physics-informed neural networks (PINNs) have earned high expectations in solving partial differential equations (PDEs)
Previous research observed the propagation failure phenomenon of PINNs.
This paper provides the first formal and in-depth study of propagation failure and its root cause.
arXiv Detail & Related papers (2025-02-02T13:56:38Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Efficient Bayesian Physics Informed Neural Networks for Inverse Problems
via Ensemble Kalman Inversion [0.0]
We present a new efficient inference algorithm for B-PINNs that uses Ensemble Kalman Inversion (EKI) for high-dimensional inference tasks.
We find that our proposed method can achieve inference results with informative uncertainty estimates comparable to Hamiltonian Monte Carlo (HMC)-based B-PINNs with a much reduced computational cost.
arXiv Detail & Related papers (2023-03-13T18:15:26Z) - A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High
Level Accuracy and Efficiency [0.20391237204597357]
Physics-informed neural networks (PINNs) have been widely applied in different fields.
We propose a novel dimension-augmented physics-informed neural network (DaPINN)
DaPINN simultaneously and significantly improves the accuracy and efficiency of the PINN.
arXiv Detail & Related papers (2022-10-19T15:54:37Z) - Failure-informed adaptive sampling for PINNs [5.723850818203907]
Physics-informed neural networks (PINNs) have emerged as an effective technique for solving PDEs in a wide range of domains.
Recent research has demonstrated, however, that the performance of PINNs can vary dramatically with different sampling procedures.
We present an adaptive approach termed failure-informed PINNs, which is inspired by the viewpoint of reliability analysis.
arXiv Detail & Related papers (2022-10-01T13:34:41Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - PSO-PINN: Physics-Informed Neural Networks Trained with Particle Swarm
Optimization [0.0]
We propose the use of a hybrid particle swarm optimization and gradient descent approach to train PINNs.
The resulting PSO-PINN algorithm mitigates the undesired behaviors of PINNs trained with standard gradient descent.
Experimental results show that PSO-PINN consistently outperforms a baseline PINN trained with Adam gradient descent.
arXiv Detail & Related papers (2022-02-04T02:21:31Z) - B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
Inverse PDE Problems with Noisy Data [7.33020629757864]
We propose a physics-informed neural network (B-PINN) to solve both forward and inverse nonlinear problems.
B-PINNs make use of both physical laws and scattered noisy measurements to provide predictions and quantify the aleatoric uncertainty.
arXiv Detail & Related papers (2020-03-13T04:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.