論文の概要: Interpretable Generative Models through Post-hoc Concept Bottlenecks
- arxiv url: http://arxiv.org/abs/2503.19377v1
- Date: Tue, 25 Mar 2025 06:09:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:51:14.159094
- Title: Interpretable Generative Models through Post-hoc Concept Bottlenecks
- Title(参考訳): ポストホック概念ボトルネックによる解釈可能な生成モデル
- Authors: Akshay Kulkarni, Ge Yan, Chung-En Sun, Tuomas Oikarinen, Tsui-Wei Weng,
- Abstract要約: 概念ボトルネックモデル(CBM)は、人間の理解可能な概念を予測に頼って本質的に解釈可能なモデルを作成することを目的としている。
既存のCBMに基づく解釈可能な生成モデルの設計には、スクラッチからの高価な生成モデルトレーニングと、労働集約的な概念監督を伴う実際のイメージが必要である。
本稿では,ポストホック手法を用いて解釈可能な生成モデルを構築するための,新しい2つの手法と低コスト手法を提案する。
- 参考スコア(独自算出の注目度): 14.083735412774812
- License:
- Abstract: Concept bottleneck models (CBM) aim to produce inherently interpretable models that rely on human-understandable concepts for their predictions. However, existing approaches to design interpretable generative models based on CBMs are not yet efficient and scalable, as they require expensive generative model training from scratch as well as real images with labor-intensive concept supervision. To address these challenges, we present two novel and low-cost methods to build interpretable generative models through post-hoc techniques and we name our approaches: concept-bottleneck autoencoder (CB-AE) and concept controller (CC). Our proposed approaches enable efficient and scalable training without the need of real data and require only minimal to no concept supervision. Additionally, our methods generalize across modern generative model families including generative adversarial networks and diffusion models. We demonstrate the superior interpretability and steerability of our methods on numerous standard datasets like CelebA, CelebA-HQ, and CUB with large improvements (average ~25%) over the prior work, while being 4-15x faster to train. Finally, a large-scale user study is performed to validate the interpretability and steerability of our methods.
- Abstract(参考訳): 概念ボトルネックモデル(CBM)は、人間の理解可能な概念を予測に頼って本質的に解釈可能なモデルを作成することを目的としている。
しかし、CBMに基づく解釈可能な生成モデルを設計するための既存のアプローチは、スクラッチからの高価な生成モデルトレーニングや、労働集約的な概念監督を伴う実際のイメージを必要とするため、まだ効率的でスケーラブルではない。
これらの課題に対処するために,ポストホック手法を用いて解釈可能な生成モデルを構築するための新しい,低コストな2つの手法を提案し,そのアプローチを概念ボトルネックオートエンコーダ (CB-AE) と概念コントローラ (CC) と呼ぶ。
提案手法では,実データを必要としない効率的かつスケーラブルなトレーニングが可能で,最小限の,概念管理を必要としない。
さらに, この手法は, 生成逆数ネットワークや拡散モデルを含む, 現代の生成モデルファミリにまたがって一般化する。
我々は,CelebA,CelebA-HQ,CUBといった多くの標準データセットに対して,従来の作業よりも大幅な改善(平均25%)を施し,トレーニングの4~15倍高速な手法の解釈可能性とステアビリティを実証した。
最後に,本手法の解釈可能性と操縦性を検証するため,大規模ユーザスタディを実施した。
関連論文リスト
- CAR: Controllable Autoregressive Modeling for Visual Generation [100.33455832783416]
Controllable AutoRegressive Modeling (CAR)は、条件制御をマルチスケールの潜在変数モデリングに統合する新しいプラグイン・アンド・プレイフレームワークである。
CARは、制御表現を徐々に洗練し、キャプチャし、前訓練されたモデルの各自己回帰ステップに注入して生成プロセスを導く。
提案手法は,様々な条件にまたがって優れた制御性を示し,従来の手法に比べて画質の向上を実現している。
論文 参考訳(メタデータ) (2024-10-07T00:55:42Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance [16.16577751549164]
Concept Bottleneck Models (CBM) は解釈可能な予測を提供する。
CBMは人間の理解可能な概念を符号化し、モデルの判断を説明する。
本稿では,VLG-CBM(Vision-Language-Guided Concept Bottleneck Model)を提案する。
論文 参考訳(メタデータ) (2024-07-18T19:44:44Z) - AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model [7.674744385997066]
概念ボトルネックモデルは、人間の理解可能な概念の層を統合することにより、ニューラルネットワークの解釈可能性を高める。
AnyCBM"は、既存のトレーニングされたモデルを、計算リソースに最小限の影響を伴って、Concept Bottleneck Modelに変換する。
論文 参考訳(メタデータ) (2024-05-26T10:19:04Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
コンセプト・ボトルネック・モデル (Concept Bottleneck Models, CBM) は導入以来人気を集めている。
CBMは基本的に、モデルの潜在空間を人間に理解可能な高レベルな概念に制限する。
本稿では,協調型コンセプション・ボトルネックモデル(coop-CBM)を提案し,性能トレードオフを克服する。
論文 参考訳(メタデータ) (2023-11-18T15:50:07Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
本稿では,Transferable Prototype Learning (TCPL) という,本質的に解釈可能な手法を提案する。
この目的を達成するために、ソースドメインからターゲットドメインにカテゴリの基本概念を転送する階層的なプロトタイプモジュールを設計し、基礎となる推論プロセスを説明するためにドメイン共有プロトタイプを学習する。
総合的な実験により,提案手法は有効かつ直感的な説明を提供するだけでなく,従来の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-12T06:36:41Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Concept Embedding Models [27.968589555078328]
概念ボトルネックモデルは、人間のような概念の中間レベルに分類タスクを条件付けすることで、信頼性を促進する。
既存の概念ボトルネックモデルは、高いタスク精度、堅牢な概念に基づく説明、概念に対する効果的な介入の間の最適な妥協を見つけることができない。
本稿では,解釈可能な高次元概念表現を学習することで,現在の精度-vs-解釈可能性トレードオフを超える新しい概念ボトルネックモデルであるConcept Embedding Modelsを提案する。
論文 参考訳(メタデータ) (2022-09-19T14:49:36Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
概念ボトルネックモデル(CBM)に基づく新しい解釈可能なモデルを提案する。
CBMは概念ラベルを使用して、中間層を追加の可視層としてトレーニングする。
これら2つの概念をシームレスにトレーニングし,計算量を削減することにより,教師付き概念と教師なし概念を同時に得ることができる。
論文 参考訳(メタデータ) (2022-02-03T08:30:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。