COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on Boundary-Adaptive Gaussian Splitting
- URL: http://arxiv.org/abs/2503.19443v2
- Date: Wed, 26 Mar 2025 06:20:44 GMT
- Title: COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on Boundary-Adaptive Gaussian Splitting
- Authors: Jiaxin Zhang, Junjun Jiang, Youyu Chen, Kui Jiang, Xianming Liu,
- Abstract summary: 3D segmentation based on 3D Gaussian Splatting (3DGS) struggles with accurately delineating object boundaries.<n>We introduce Clear Object Boundaries for 3DGS (COB-GS), which aims to improve segmentation accuracy.<n>For semantic guidance, we introduce a boundary-adaptive Gaussian splitting technique.<n>For the visual optimization, we rectify the degraded texture of the 3DGS scene.
- Score: 67.03992455145325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate object segmentation is crucial for high-quality scene understanding in the 3D vision domain. However, 3D segmentation based on 3D Gaussian Splatting (3DGS) struggles with accurately delineating object boundaries, as Gaussian primitives often span across object edges due to their inherent volume and the lack of semantic guidance during training. In order to tackle these challenges, we introduce Clear Object Boundaries for 3DGS Segmentation (COB-GS), which aims to improve segmentation accuracy by clearly delineating blurry boundaries of interwoven Gaussian primitives within the scene. Unlike existing approaches that remove ambiguous Gaussians and sacrifice visual quality, COB-GS, as a 3DGS refinement method, jointly optimizes semantic and visual information, allowing the two different levels to cooperate with each other effectively. Specifically, for the semantic guidance, we introduce a boundary-adaptive Gaussian splitting technique that leverages semantic gradient statistics to identify and split ambiguous Gaussians, aligning them closely with object boundaries. For the visual optimization, we rectify the degraded suboptimal texture of the 3DGS scene, particularly along the refined boundary structures. Experimental results show that COB-GS substantially improves segmentation accuracy and robustness against inaccurate masks from pre-trained model, yielding clear boundaries while preserving high visual quality. Code is available at https://github.com/ZestfulJX/COB-GS.
Related papers
- CAGS: Open-Vocabulary 3D Scene Understanding with Context-Aware Gaussian Splatting [18.581169318975046]
3D Gaussian Splatting (3DGS) offers a powerful representation for scene reconstruction, but cross-view granularity inconsistency is a problem.
We propose Context-Aware Gaussian Splatting (CAGS), a novel framework that addresses this challenge by incorporating spatial context into 3DGS.
CAGS significantly improves 3D instance segmentation and reduces fragmentation errors on datasets like LERF-OVS and ScanNet.
arXiv Detail & Related papers (2025-04-16T09:20:03Z) - BG-Triangle: Bézier Gaussian Triangle for 3D Vectorization and Rendering [60.240908644910874]
Differentiable rendering enables efficient optimization by allowing gradients to be computed through the rendering process.
Existing solutions approximate or re-formulate traditional rendering operations using smooth, probabilistic proxies.
We present a novel hybrid representation that combines B'ezier triangle-based vector graphics primitives with Gaussian-based probabilistic models.
arXiv Detail & Related papers (2025-03-18T06:53:52Z) - GaussianGraph: 3D Gaussian-based Scene Graph Generation for Open-world Scene Understanding [20.578106363482018]
We propose a novel framework that enhances 3DGS-based scene understanding by integrating semantic clustering and scene graph generation.<n>We introduce a "Control-Follow" clustering strategy, which dynamically adapts to scene scale and feature distribution, avoiding feature compression.<n>We enrich scene representation by integrating object attributes and spatial relations extracted from 2D foundation models.
arXiv Detail & Related papers (2025-03-06T02:36:59Z) - Pointmap Association and Piecewise-Plane Constraint for Consistent and Compact 3D Gaussian Segmentation Field [24.145668344380766]
CCGS is a method designed to achieve both view consistent 2D segmentation and a compact 3D Gaussian segmentation field.
Experimental results on ScanNet and Replica datasets demonstrate that CCGS outperforms existing methods in both 2D panoptic segmentation and 3D Gaussian segmentation.
arXiv Detail & Related papers (2025-02-22T17:23:46Z) - GradiSeg: Gradient-Guided Gaussian Segmentation with Enhanced 3D Boundary Precision [11.99904956714193]
We propose a novel 3DGS-based framework named GradiSeg, incorporating Identity sification to construct a deeper semantic understanding of scenes.<n>Our approach introduces two key modules: Identity Gradient Guided Densification (IGD) and Local Adaptive K-Nearest Neighbors (LA-KNN)<n>Results show that GradiS effectively addresses boundary-related issues, significantly improving segmentation accuracy without compromising scene reconstruction quality.
arXiv Detail & Related papers (2024-11-30T08:07:37Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGS is an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels.<n>We show that FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
arXiv Detail & Related papers (2024-11-29T08:52:32Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.<n>We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.<n>Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - Segment Any 3D Gaussians [85.93694310363325]
This paper presents SAGA, a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS)
Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms.
We show that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-01T17:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.