Bayesian Optimization of a Lightweight and Accurate Neural Network for Aerodynamic Performance Prediction
- URL: http://arxiv.org/abs/2503.19479v1
- Date: Tue, 25 Mar 2025 09:14:36 GMT
- Title: Bayesian Optimization of a Lightweight and Accurate Neural Network for Aerodynamic Performance Prediction
- Authors: James M. Shihua, Paul Saves, Rhea P. Liem, Joseph Morlier,
- Abstract summary: We propose a new approach to build efficient and accurate predictive models for aerodynamic performance prediction.<n>To clearly describe the interplay between design variables, hierarchical and categorical kernels are used in the BO formulation.<n>For the drag coefficient prediction task, the Mean Absolute Percentage Error (MAPE) of our optimized model drops from 0.1433% to 0.0163%.<n>Our model achieves a MAPE of 0.82% on a benchmark aircraft self-noise prediction problem, significantly outperforming existing models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ensuring high accuracy and efficiency of predictive models is paramount in the aerospace industry, particularly in the context of multidisciplinary design and optimization processes. These processes often require numerous evaluations of complex objective functions, which can be computationally expensive and time-consuming. To build efficient and accurate predictive models, we propose a new approach that leverages Bayesian Optimization (BO) to optimize the hyper-parameters of a lightweight and accurate Neural Network (NN) for aerodynamic performance prediction. To clearly describe the interplay between design variables, hierarchical and categorical kernels are used in the BO formulation. We demonstrate the efficiency of our approach through two comprehensive case studies, where the optimized NN significantly outperforms baseline models and other publicly available NNs in terms of accuracy and parameter efficiency. For the drag coefficient prediction task, the Mean Absolute Percentage Error (MAPE) of our optimized model drops from 0.1433\% to 0.0163\%, which is nearly an order of magnitude improvement over the baseline model. Additionally, our model achieves a MAPE of 0.82\% on a benchmark aircraft self-noise prediction problem, significantly outperforming existing models (where their MAPE values are around 2 to 3\%) while requiring less computational resources. The results highlight the potential of our framework to enhance the scalability and performance of NNs in large-scale MDO problems, offering a promising solution for the aerospace industry.
Related papers
- QGAPHEnsemble : Combining Hybrid QLSTM Network Ensemble via Adaptive Weighting for Short Term Weather Forecasting [0.0]
This research highlights the practical efficacy of employing advanced machine learning techniques.<n>Our model demonstrates a substantial improvement in the accuracy and reliability of meteorological predictions.<n>The paper highlights the importance of optimized ensemble techniques to improve the performance the given weather forecasting task.
arXiv Detail & Related papers (2025-01-18T20:18:48Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
We introduce a new framework based on the empirical probability density function of the loss's magnitude, termed the "gradient magnitude histogram"
We propose a novel algorithm using gradient magnitude histograms to automatically estimate a refined and accurate search space for the optimal safeguard.
arXiv Detail & Related papers (2023-11-20T04:34:19Z) - Fairer and More Accurate Tabular Models Through NAS [14.147928131445852]
We propose using multi-objective Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) in the first application to the very challenging domain of tabular data.
We show that models optimized solely for accuracy with NAS often fail to inherently address fairness concerns.
We produce architectures that consistently dominate state-of-the-art bias mitigation methods either in fairness, accuracy or both.
arXiv Detail & Related papers (2023-10-18T17:56:24Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - DEBOSH: Deep Bayesian Shape Optimization [48.80431740983095]
We propose a novel uncertainty-based method tailored to shape optimization.
It enables effective BO and increases the quality of the resulting shapes beyond that of state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-28T11:01:42Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Highly Efficient Salient Object Detection with 100K Parameters [137.74898755102387]
We propose a flexible convolutional module, namely generalized OctConv (gOctConv), to efficiently utilize both in-stage and cross-stages multi-scale features.
We build an extremely light-weighted model, namely CSNet, which achieves comparable performance with about 0.2% (100k) of large models on popular object detection benchmarks.
arXiv Detail & Related papers (2020-03-12T07:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.