Exploring Disentangled and Controllable Human Image Synthesis: From End-to-End to Stage-by-Stage
- URL: http://arxiv.org/abs/2503.19486v1
- Date: Tue, 25 Mar 2025 09:23:20 GMT
- Title: Exploring Disentangled and Controllable Human Image Synthesis: From End-to-End to Stage-by-Stage
- Authors: Zhengwentai Sun, Heyuan Li, Xihe Yang, Keru Zheng, Shuliang Ning, Yihao Zhi, Hongjie Liao, Chenghong Li, Shuguang Cui, Xiaoguang Han,
- Abstract summary: We introduce a new disentangled and controllable human synthesis task.<n>We first develop an end-to-end generative model trained on MVHumanNet for factor disentanglement.<n>We propose a stage-by-stage framework that decomposes human image generation into three sequential steps.
- Score: 34.72900198337818
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Achieving fine-grained controllability in human image synthesis is a long-standing challenge in computer vision. Existing methods primarily focus on either facial synthesis or near-frontal body generation, with limited ability to simultaneously control key factors such as viewpoint, pose, clothing, and identity in a disentangled manner. In this paper, we introduce a new disentangled and controllable human synthesis task, which explicitly separates and manipulates these four factors within a unified framework. We first develop an end-to-end generative model trained on MVHumanNet for factor disentanglement. However, the domain gap between MVHumanNet and in-the-wild data produce unsatisfacotry results, motivating the exploration of virtual try-on (VTON) dataset as a potential solution. Through experiments, we observe that simply incorporating the VTON dataset as additional data to train the end-to-end model degrades performance, primarily due to the inconsistency in data forms between the two datasets, which disrupts the disentanglement process. To better leverage both datasets, we propose a stage-by-stage framework that decomposes human image generation into three sequential steps: clothed A-pose generation, back-view synthesis, and pose and view control. This structured pipeline enables better dataset utilization at different stages, significantly improving controllability and generalization, especially for in-the-wild scenarios. Extensive experiments demonstrate that our stage-by-stage approach outperforms end-to-end models in both visual fidelity and disentanglement quality, offering a scalable solution for real-world tasks. Additional demos are available on the project page: https://taited.github.io/discohuman-project/.
Related papers
- SynergyAmodal: Deocclude Anything with Text Control [27.027748040959025]
Image deocclusion aims to recover the invisible regions (ie, shape and appearance) of occluded instances in images.
We propose SynergyAmodal, a novel framework for co-synthesizing in-the-wild amodal datasets with comprehensive shape and appearance annotations.
arXiv Detail & Related papers (2025-04-28T06:04:17Z) - Drive-1-to-3: Enriching Diffusion Priors for Novel View Synthesis of Real Vehicles [81.29018359825872]
This paper consolidates a set of good practices to finetune large pretrained models for a real-world task.<n>Specifically, we develop several strategies to account for discrepancies between the synthetic data and real driving data.<n>Our insights lead to effective finetuning that results in a $68.8%$ reduction in FID for novel view synthesis over prior arts.
arXiv Detail & Related papers (2024-12-19T03:39:13Z) - Controlling Human Shape and Pose in Text-to-Image Diffusion Models via Domain Adaptation [1.3654846342364308]
We present a methodology for conditional control of human shape and pose in pretrained text-to-image diffusion models.
Fine-tuning these diffusion models to adhere to new conditions requires large datasets and high-quality annotations.
We propose a domain-adaptation technique that maintains image quality by isolating synthetically trained conditional information.
arXiv Detail & Related papers (2024-11-07T14:02:41Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - Multi-View Unsupervised Image Generation with Cross Attention Guidance [23.07929124170851]
This paper introduces a novel pipeline for unsupervised training of a pose-conditioned diffusion model on single-category datasets.
We identify object poses by clustering the dataset through comparing visibility and locations of specific object parts.
Our model, MIRAGE, surpasses prior work in novel view synthesis on real images.
arXiv Detail & Related papers (2023-12-07T14:55:13Z) - Towards a Unified Transformer-based Framework for Scene Graph Generation
and Human-object Interaction Detection [116.21529970404653]
We introduce SG2HOI+, a unified one-step model based on the Transformer architecture.
Our approach employs two interactive hierarchical Transformers to seamlessly unify the tasks of SGG and HOI detection.
Our approach achieves competitive performance when compared to state-of-the-art HOI methods.
arXiv Detail & Related papers (2023-11-03T07:25:57Z) - Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement [12.857137513211866]
We propose an effective model training pipeline consisting of a training data synthesis and a gaze estimation model for unsupervised domain adaptation.
The proposed data synthesis leverages the single-image 3D reconstruction to expand the range of the head poses from the source domain without requiring a 3D facial shape dataset.
We propose a disentangling autoencoder network to separate gaze-related features and introduce background augmentation consistency loss to utilize the characteristics of the synthetic source domain.
arXiv Detail & Related papers (2023-05-25T15:15:03Z) - StyleGAN-Human: A Data-Centric Odyssey of Human Generation [96.7080874757475]
This work takes a data-centric perspective and investigates multiple critical aspects in "data engineering"
We collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures.
We rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment.
arXiv Detail & Related papers (2022-04-25T17:55:08Z) - Generative Partial Visual-Tactile Fused Object Clustering [81.17645983141773]
We propose a Generative Partial Visual-Tactile Fused (i.e., GPVTF) framework for object clustering.
A conditional cross-modal clustering generative adversarial network is then developed to synthesize one modality conditioning on the other modality.
To the end, two pseudo-label based KL-divergence losses are employed to update the corresponding modality-specific encoders.
arXiv Detail & Related papers (2020-12-28T02:37:03Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
Large datasets can be used for improved, targeted training of deep neural networks.
In particular, we make use of a 3D morphable face model for the rendering of multiple 2D images across a dataset of 100 synthetic identities.
arXiv Detail & Related papers (2020-06-21T10:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.