One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
- URL: http://arxiv.org/abs/2503.19523v2
- Date: Wed, 26 Mar 2025 07:37:33 GMT
- Title: One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
- Authors: Xin Cai,
- Abstract summary: We primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs)<n>We reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction.<n>This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction.
- Score: 2.1212179660694104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs). We begin with a concise overview of the typical steps involved in RLHF and LRMs. Next, we reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction, providing a clear conceptual framework that uncovers a deeper connection between these seemingly distinct approaches. Following this, we briefly review some core principles of reinforcement learning, drawing attention to an often-overlooked aspect in existing RLHF studies. This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction. Finally, by reinvestigating the principles behind Proximal Policy Optimization (PPO), we pinpoint areas needing adjustment, which culminates in the introduction of the Generalized Reinforce Optimization (GRO) framework, seamlessly integrating RL-based and RL-free methods in RLHF. We look forward to the community's efforts to empirically validate GRO and invite constructive feedback.
Related papers
- Provably Efficient RLHF Pipeline: A Unified View from Contextual Bandits [59.30310692855397]
We propose a unified framework for the RLHF pipeline from the view of contextual bandits.
We decompose the RLHF process into two distinct stages: (post-)training and deployment.
We then develop novel algorithms for each stage, demonstrating significant improvements in both statistical and computational efficiency.
arXiv Detail & Related papers (2025-02-11T02:36:01Z) - Towards General-Purpose Model-Free Reinforcement Learning [40.973429772093155]
Reinforcement learning (RL) promises a framework for near-universal problem-solving.<n>In practice, RL algorithms are often tailored to specific benchmarks.<n>We propose a unifying model-free deep RL algorithm that can address a diverse class of domains and problem settings.
arXiv Detail & Related papers (2025-01-27T15:36:37Z) - RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs [49.386699863989335]
Training large language models (LLMs) to serve as effective assistants for humans requires careful consideration.
A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences.
In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals.
arXiv Detail & Related papers (2024-04-12T15:54:15Z) - Back to Basics: Revisiting REINFORCE Style Optimization for Learning
from Human Feedback in LLMs [29.505270680223003]
AI alignment in the shape of Reinforcement Learning from Human Feedback is increasingly treated as a crucial ingredient for high performance large language models.
Proximal Policy Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF.
We show that many components of PPO are unnecessary in an RLHF context and that simpler REINFORCE-style optimization variants outperform both PPO and newly proposed "RL-free" methods such as DPO and RAFT.
arXiv Detail & Related papers (2024-02-22T17:52:34Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
This paper studies the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF)
We first identify the primary challenges of existing popular methods like offline PPO and offline DPO as lacking in strategical exploration of the environment.
We propose efficient algorithms with finite-sample theoretical guarantees.
arXiv Detail & Related papers (2023-12-18T18:58:42Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - A Simple Reward-free Approach to Constrained Reinforcement Learning [33.813302183231556]
This paper bridges reward-free RL and constrained RL. Particularly, we propose a simple meta-algorithm such that given any reward-free RL oracle, the approachability and constrained RL problems can be directly solved with negligible overheads in sample complexity.
arXiv Detail & Related papers (2021-07-12T06:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.