Collapse-based models for gravity do not violate the Entanglement-Based Witness of non-classicality
- URL: http://arxiv.org/abs/2503.19774v1
- Date: Tue, 25 Mar 2025 15:44:59 GMT
- Title: Collapse-based models for gravity do not violate the Entanglement-Based Witness of non-classicality
- Authors: Tianfeng Feng, Vlatko Vedral, Chiara Marletto,
- Abstract summary: An entanglement-based witness of non-classicality can be applied to testing quantum effects in gravity.<n>Recent claims have been made that collapse-based models of classical gravity can predict gravitationally induced entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is known that an entanglement-based witness of non-classicality can be applied to testing quantum effects in gravity. Specifically, if a system can create entanglement between two quantum probes by local means only, then it must be non-classical. Recently, claims have been made that collapse-based models of classical gravity, i.e. Di\'osi-Penrose model, can predict gravitationally induced entanglement between quantum objects, resulting in gravitationally induced entanglement is insufficient to conclude that gravity is fundamentally quantum, contrary to the witness statement. Here we vindicate the witness. We analyze the underlying physics of collapse-based models for gravity and show that these models have nonlocal features, violating the principle of locality.
Related papers
- The Role of Quantum Measurements when Testing the Quantum Nature of Gravity [12.091555830963683]
We argue that the Causal Conditional Formulation of Schroedinger-Newton (CCSN) theory is a minimum model within this framework.
Since CCSN can be viewed as a quantum feedback control scheme, it can be made causal and free from pathologies that previously plagued SN theories.
We show that the mass-concentration effect of self classical gravity still makes CCSN much easier to test than testing the mutual entanglement.
arXiv Detail & Related papers (2025-03-14T21:09:17Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Unveiling gravity's quantum fingerprint through gravitational waves [0.49157446832511503]
We introduce an innovative method to explore gravity's quantum aspects using a novel theoretical framework.
Our model delves into gravity-induced entanglement (GIE) while sidestepping classical communication limitations imposed by the LOCC principle.
arXiv Detail & Related papers (2024-03-17T16:06:44Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Distinguishable consequence of classical gravity on quantum matter [0.0]
A consistent co-existence of classical gravity and quantum matter requires that gravity exhibit irreducible fluctuations.<n>We use a consistent theory of quantum-classical dynamics in the Newtonian limit of gravity to show that experimentally relevant observables can conclusively test the hypothesis that gravity is classical.
arXiv Detail & Related papers (2023-09-16T22:32:04Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Strongly incoherent gravity [0.0]
A non-entangling version of an arbitrary two-body potential $V(r)$ arises from local measurements and feedback forces.
This produces a non-relativistic model of gravity with fundamental loss of unitarity.
As an alternative to testing entanglement properties, we show that the entire remaining parameter space can be tested by looking for loss of quantum coherence in small systems.
arXiv Detail & Related papers (2023-01-20T01:09:12Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - A no-go theorem on the nature of the gravitational field beyond quantum
theory [0.0]
Table-top experiments involving massive quantum systems have been proposed to test the interface of quantum theory and gravity.
In particular, the crucial point of the debate is whether it is possible to conclude anything on the quantum nature of the gravitational field.
We introduce the framework of Generalised Probabilistic Theories (GPTs) to study the nature of the gravitational field.
arXiv Detail & Related papers (2020-12-02T19:00:03Z) - Witnessing non-classicality beyond quantum theory [0.0]
We show that if a physical system can mediate locally the generation of entanglement between two quantum systems, then it itself must be non-classical.
We do not assume any classical or quantum formalism to describe the mediating physical system.
arXiv Detail & Related papers (2020-03-17T22:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.