論文の概要: Identification of Average Treatment Effects in Nonparametric Panel Models
- arxiv url: http://arxiv.org/abs/2503.19873v1
- Date: Tue, 25 Mar 2025 17:36:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:53:24.418671
- Title: Identification of Average Treatment Effects in Nonparametric Panel Models
- Title(参考訳): 非パラメトリックパネルモデルにおける平均処理効果の同定
- Authors: Susan Athey, Guido Imbens,
- Abstract要約: 本稿では,パネルデータ設定における平均処理効果の同定について検討する。
新規な非パラメトリック因子モデルを導入し、平均治療効果の同定を証明している。
- 参考スコア(独自算出の注目度): 5.10123605644148
- License:
- Abstract: This paper studies identification of average treatment effects in a panel data setting. It introduces a novel nonparametric factor model and proves identification of average treatment effects. The identification proof is based on the introduction of a consistent estimator. Underlying the proof is a result that there is a consistent estimator for the expected outcome in the absence of the treatment for each unit and time period; this result can be applied more broadly, for example in problems of decompositions of group-level differences in outcomes, such as the much-studied gender wage gap.
- Abstract(参考訳): 本稿では,パネルデータ設定における平均処理効果の同定について検討する。
新規な非パラメトリック因子モデルを導入し、平均治療効果の同定を証明している。
同定証明は、一貫した推定器の導入に基づいている。
証明の根底にあるのは、各単位と期間の待遇の欠如において、期待される結果に対する一貫した推定値が存在することであり、例えば、多くの調査された男女賃金格差のような結果におけるグループレベルの差の分解の問題など、より広く適用することができる。
関連論文リスト
- Valid causal inference with unobserved confounding in high-dimensional
settings [0.0]
半パラメトリックな推論が、観測されていない共同創設者や高次元ニュアンスモデルの存在下でどのように得られるかを示す。
本研究では、観測不能な共振を許容する不確実区間を提案し、観測不能な共振の量が小さい場合、その結果の推論が有効であることを示す。
論文 参考訳(メタデータ) (2024-01-12T13:21:20Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
本稿では,選択したサブセットに対して,結果に反する結果をもたらすモデルに依存しないデータ拡張手法を提案する。
我々は、比較学習を用いて表現空間と類似度尺度を学習し、学習された類似度尺度で同定された個人に近い学習空間において、同様の潜在的な結果が得られるようにした。
この性質は、代替治療群から近接した近縁者に対する対実的な結果の信頼性の高い計算を保証する。
論文 参考訳(メタデータ) (2023-11-07T00:36:51Z) - Recovering Sparse and Interpretable Subgroups with Heterogeneous
Treatment Effects with Censored Time-to-Event Outcomes [14.928328404160299]
本研究では,スパース表現群(またはサブタイプ)の回復に対する統計的アプローチを提案する。
そこで本研究では, 循環器系医療における重要な臨床研究において, スパース表現型を回収するための新しい推論手法を提案し, その有効性を示した。
論文 参考訳(メタデータ) (2023-02-24T08:10:23Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
本研究では,治療薬対の条件付き平均因果効果を観測データと仮定の組み合わせで推定する作業について検討した。
これは疫学や経済学など、意思決定のために治療薬対を必要とする分野における長年にわたる課題である。
この問題に対するいくつかのベンチマークデータセットに対して、実証的に新しい最先端のパフォーマンス結果を示す。
論文 参考訳(メタデータ) (2022-05-29T15:26:59Z) - Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects [13.32091725929965]
本研究では、観察領域と実験領域のデータを用いて、治療変数の長期的な結果変数に対する因果効果を推定するタスクについて検討する。
観測データは共起していると考えられており、さらなる仮定なしでは、このデータセットは因果推論にも使用できない。
論文 参考訳(メタデータ) (2022-01-26T04:21:14Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。