Visuo-Tactile Object Pose Estimation for a Multi-Finger Robot Hand with Low-Resolution In-Hand Tactile Sensing
- URL: http://arxiv.org/abs/2503.19893v1
- Date: Tue, 25 Mar 2025 17:53:53 GMT
- Title: Visuo-Tactile Object Pose Estimation for a Multi-Finger Robot Hand with Low-Resolution In-Hand Tactile Sensing
- Authors: Lukas Mack, Felix GrĂ¼ninger, Benjamin A. Richardson, Regine Lendway, Katherine J. Kuchenbecker, Joerg Stueckler,
- Abstract summary: Accurate 3D pose estimation of grasped objects is an important prerequisite for robots to perform assembly or in-hand manipulation tasks.<n>We propose that combining visual information and proprioception with binary, low-resolution tactile contact measurements can mitigate this issue.
- Score: 9.970043211592058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate 3D pose estimation of grasped objects is an important prerequisite for robots to perform assembly or in-hand manipulation tasks, but object occlusion by the robot's own hand greatly increases the difficulty of this perceptual task. Here, we propose that combining visual information and proprioception with binary, low-resolution tactile contact measurements from across the interior surface of an articulated robotic hand can mitigate this issue. The visuo-tactile object-pose-estimation problem is formulated probabilistically in a factor graph. The pose of the object is optimized to align with the three kinds of measurements using a robust cost function to reduce the influence of visual or tactile outlier readings. The advantages of the proposed approach are first demonstrated in simulation: a custom 15-DoF robot hand with one binary tactile sensor per link grasps 17 YCB objects while observed by an RGB-D camera. This low-resolution in-hand tactile sensing significantly improves object-pose estimates under high occlusion and also high visual noise. We also show these benefits through grasping tests with a preliminary real version of our tactile hand, obtaining reasonable visuo-tactile estimates of object pose at approximately 13.3 Hz on average.
Related papers
- HOGSA: Bimanual Hand-Object Interaction Understanding with 3D Gaussian Splatting Based Data Augmentation [29.766317710266765]
We propose a new 3D Gaussian Splatting based data augmentation framework for bimanual hand-object interaction.<n>We use mesh-based 3DGS to model objects and hands, and to deal with the rendering blur problem due to multi-resolution input images used.<n>We extend the single hand grasping pose optimization module for the bimanual hand object to generate various poses of bimanual hand-object interaction.
arXiv Detail & Related papers (2025-01-06T08:48:17Z) - 3D Foundation Models Enable Simultaneous Geometry and Pose Estimation of Grasped Objects [13.58353565350936]
We contribute methodology to jointly estimate the geometry and pose of objects grasped by a robot.
Our method transforms the estimated geometry into the robot's coordinate frame.
We empirically evaluate our approach on a robot manipulator holding a diverse set of real-world objects.
arXiv Detail & Related papers (2024-07-14T21:02:55Z) - Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects [89.95728475983263]
holistic 3Dunderstanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation.
We design the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits.
Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks.
arXiv Detail & Related papers (2024-03-25T05:12:21Z) - Fit-NGP: Fitting Object Models to Neural Graphics Primitives [19.513102875891775]
We show that the density field created by a state-of-the-art efficient radiance field reconstruction method is suitable for highly accurate pose estimation.
We present a fully automatic object pose estimation system based on a robot arm with a single wrist-mounted camera.
arXiv Detail & Related papers (2024-01-04T16:57:56Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Monocular 3D Reconstruction of Interacting Hands via Collision-Aware
Factorized Refinements [96.40125818594952]
We make the first attempt to reconstruct 3D interacting hands from monocular single RGB images.
Our method can generate 3D hand meshes with both precise 3D poses and minimal collisions.
arXiv Detail & Related papers (2021-11-01T08:24:10Z) - Towards unconstrained joint hand-object reconstruction from RGB videos [81.97694449736414]
Reconstructing hand-object manipulations holds a great potential for robotics and learning from human demonstrations.
We first propose a learning-free fitting approach for hand-object reconstruction which can seamlessly handle two-hand object interactions.
arXiv Detail & Related papers (2021-08-16T12:26:34Z) - Physics-Based Dexterous Manipulations with Estimated Hand Poses and
Residual Reinforcement Learning [52.37106940303246]
We learn a model that maps noisy input hand poses to target virtual poses.
The agent is trained in a residual setting by using a model-free hybrid RL+IL approach.
We test our framework in two applications that use hand pose estimates for dexterous manipulations: hand-object interactions in VR and hand-object motion reconstruction in-the-wild.
arXiv Detail & Related papers (2020-08-07T17:34:28Z) - Measuring Generalisation to Unseen Viewpoints, Articulations, Shapes and
Objects for 3D Hand Pose Estimation under Hand-Object Interaction [137.28465645405655]
HANDS'19 is a challenge to evaluate the abilities of current 3D hand pose estimators (HPEs) to interpolate and extrapolate the poses of a training set.
We show that the accuracy of state-of-the-art methods can drop, and that they fail mostly on poses absent from the training set.
arXiv Detail & Related papers (2020-03-30T19:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.