3D Foundation Models Enable Simultaneous Geometry and Pose Estimation of Grasped Objects
- URL: http://arxiv.org/abs/2407.10331v1
- Date: Sun, 14 Jul 2024 21:02:55 GMT
- Title: 3D Foundation Models Enable Simultaneous Geometry and Pose Estimation of Grasped Objects
- Authors: Weiming Zhi, Haozhan Tang, Tianyi Zhang, Matthew Johnson-Roberson,
- Abstract summary: We contribute methodology to jointly estimate the geometry and pose of objects grasped by a robot.
Our method transforms the estimated geometry into the robot's coordinate frame.
We empirically evaluate our approach on a robot manipulator holding a diverse set of real-world objects.
- Score: 13.58353565350936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans have the remarkable ability to use held objects as tools to interact with their environment. For this to occur, humans internally estimate how hand movements affect the object's movement. We wish to endow robots with this capability. We contribute methodology to jointly estimate the geometry and pose of objects grasped by a robot, from RGB images captured by an external camera. Notably, our method transforms the estimated geometry into the robot's coordinate frame, while not requiring the extrinsic parameters of the external camera to be calibrated. Our approach leverages 3D foundation models, large models pre-trained on huge datasets for 3D vision tasks, to produce initial estimates of the in-hand object. These initial estimations do not have physically correct scales and are in the camera's frame. Then, we formulate, and efficiently solve, a coordinate-alignment problem to recover accurate scales, along with a transformation of the objects to the coordinate frame of the robot. Forward kinematics mappings can subsequently be defined from the manipulator's joint angles to specified points on the object. These mappings enable the estimation of points on the held object at arbitrary configurations, enabling robot motion to be designed with respect to coordinates on the grasped objects. We empirically evaluate our approach on a robot manipulator holding a diverse set of real-world objects.
Related papers
- PickScan: Object discovery and reconstruction from handheld interactions [99.99566882133179]
We develop an interaction-guided and class-agnostic method to reconstruct 3D representations of scenes.
Our main contribution is a novel approach to detecting user-object interactions and extracting the masks of manipulated objects.
Compared to Co-Fusion, the only comparable interaction-based and class-agnostic baseline, this corresponds to a reduction in chamfer distance of 73%.
arXiv Detail & Related papers (2024-11-17T23:09:08Z) - Fit-NGP: Fitting Object Models to Neural Graphics Primitives [19.513102875891775]
We show that the density field created by a state-of-the-art efficient radiance field reconstruction method is suitable for highly accurate pose estimation.
We present a fully automatic object pose estimation system based on a robot arm with a single wrist-mounted camera.
arXiv Detail & Related papers (2024-01-04T16:57:56Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
Current techniques heavily rely on a reference 3D object, limiting their generalizability and making it expensive to expand to new object categories.
This paper proposes ShapeShift, a superquadric-based framework for object pose estimation that predicts the object's pose relative to a primitive shape which is fitted to the object.
arXiv Detail & Related papers (2023-04-10T20:55:41Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
Our work aims to reconstruct hand-held objects given a single RGB image.
In contrast to prior works that typically assume known 3D templates and reduce the problem to 3D pose estimation, our work reconstructs generic hand-held object without knowing their 3D templates.
arXiv Detail & Related papers (2022-04-14T17:59:02Z) - 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark [17.493403705281008]
We present a new dataset for 6-DoF pose estimation of known objects, with a focus on robotic manipulation research.
We provide 3D scanned textured models of toy grocery objects, as well as RGBD images of the objects in challenging, cluttered scenes.
Using semi-automated RGBD-to-model texture correspondences, the images are annotated with ground truth poses that were verified empirically to be accurate to within a few millimeters.
We also propose a new pose evaluation metric called ADD-H based upon the Hungarian assignment algorithm that is robust to symmetries in object geometry without requiring their explicit enumeration.
arXiv Detail & Related papers (2022-03-11T01:19:04Z) - Estimating 3D Motion and Forces of Human-Object Interactions from
Internet Videos [49.52070710518688]
We introduce a method to reconstruct the 3D motion of a person interacting with an object from a single RGB video.
Our method estimates the 3D poses of the person together with the object pose, the contact positions and the contact forces on the human body.
arXiv Detail & Related papers (2021-11-02T13:40:18Z) - Object Detection and Pose Estimation from RGB and Depth Data for
Real-time, Adaptive Robotic Grasping [0.0]
We propose a system that performs real-time object detection and pose estimation, for the purpose of dynamic robot grasping.
The proposed approach allows the robot to detect the object identity and its actual pose, and then adapt a canonical grasp in order to be used with the new pose.
For training, the system defines a canonical grasp by capturing the relative pose of an object with respect to the gripper attached to the robot's wrist.
During testing, once a new pose is detected, a canonical grasp for the object is identified and then dynamically adapted by adjusting the robot arm's joint angles.
arXiv Detail & Related papers (2021-01-18T22:22:47Z) - Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation [89.82169646672872]
We propose an unsupervised vision-based system to estimate the joint configurations of the robot arm from a sequence of RGB or RGB-D images without knowing the model a priori.
We combine a classical geometric formulation with deep learning and extend the use of epipolar multi-rigid-body constraints to solve this task.
arXiv Detail & Related papers (2020-11-30T20:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.