CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning
- URL: http://arxiv.org/abs/2503.19900v1
- Date: Tue, 25 Mar 2025 17:57:17 GMT
- Title: CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning
- Authors: Hao Yu, Zhuokai Zhao, Shen Yan, Lukasz Korycki, Jianyu Wang, Baosheng He, Jiayi Liu, Lizhu Zhang, Xiangjun Fan, Hanchao Yu,
- Abstract summary: We introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks.<n>Our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks.
- Score: 24.981279071712173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
Related papers
- Enhanced Continual Learning of Vision-Language Models with Model Fusion [16.764069327701186]
Vision-Language Models (VLMs) represent a breakthrough in artificial intelligence.<n>VLMs are susceptible to catastrophic forgetting when sequentially fine-tuned on multiple downstream tasks.<n>We propose Continual Decoupling-Unifying (ConDU), a novel approach, by introducing model fusion into continual learning.
arXiv Detail & Related papers (2025-03-12T15:48:13Z) - Boosting the Generalization and Reasoning of Vision Language Models with Curriculum Reinforcement Learning [12.728451197053321]
We propose Curriculum Reinforcement Finetuning (Curr-ReFT), a novel post-training paradigm specifically designed for small-scale vision-language models (VLMs)
Curr-ReFT comprises two sequential stages: Curriculum Reinforcement Learning and Rejected Sampling-based Self-improvement.
Our experiments demonstrate that models trained with Curr-ReFT paradigm achieve state-of-the-art performance across various visual tasks.
arXiv Detail & Related papers (2025-03-10T08:48:50Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
We propose SynerGen-VL, a simple yet powerful encoder-free MLLM capable of both image understanding and generation.<n>We introduce the token folding mechanism and the vision-expert-based progressive alignment pretraining strategy, which effectively support high-resolution image understanding.<n>Our code and models shall be released.
arXiv Detail & Related papers (2024-12-12T18:59:26Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.