論文の概要: PartRM: Modeling Part-Level Dynamics with Large Cross-State Reconstruction Model
- arxiv url: http://arxiv.org/abs/2503.19913v1
- Date: Tue, 25 Mar 2025 17:59:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:54:57.744599
- Title: PartRM: Modeling Part-Level Dynamics with Large Cross-State Reconstruction Model
- Title(参考訳): PartRM: 大規模クロスステート再構築モデルによる部分レベルダイナミクスのモデル化
- Authors: Mingju Gao, Yike Pan, Huan-ang Gao, Zongzheng Zhang, Wenyi Li, Hao Dong, Hao Tang, Li Yi, Hao Zhao,
- Abstract要約: PartRMは、静的オブジェクトの多視点画像から外観、幾何学、部分レベルの動きを同時にモデル化する新しい4D再構成フレームワークである。
我々はPartDrag-4Dデータセットを導入し、20,000以上の状態にまたがる部分レベルのダイナミクスを多視点で観察する。
実験結果から,PartRMはロボット工学の操作作業に応用できる部分レベルの動作学習において,新たな最先端技術を確立していることがわかった。
- 参考スコア(独自算出の注目度): 23.768571323272152
- License:
- Abstract: As interest grows in world models that predict future states from current observations and actions, accurately modeling part-level dynamics has become increasingly relevant for various applications. Existing approaches, such as Puppet-Master, rely on fine-tuning large-scale pre-trained video diffusion models, which are impractical for real-world use due to the limitations of 2D video representation and slow processing times. To overcome these challenges, we present PartRM, a novel 4D reconstruction framework that simultaneously models appearance, geometry, and part-level motion from multi-view images of a static object. PartRM builds upon large 3D Gaussian reconstruction models, leveraging their extensive knowledge of appearance and geometry in static objects. To address data scarcity in 4D, we introduce the PartDrag-4D dataset, providing multi-view observations of part-level dynamics across over 20,000 states. We enhance the model's understanding of interaction conditions with a multi-scale drag embedding module that captures dynamics at varying granularities. To prevent catastrophic forgetting during fine-tuning, we implement a two-stage training process that focuses sequentially on motion and appearance learning. Experimental results show that PartRM establishes a new state-of-the-art in part-level motion learning and can be applied in manipulation tasks in robotics. Our code, data, and models are publicly available to facilitate future research.
- Abstract(参考訳): 将来の状態を現在の観測と行動から予測する世界モデルへの関心が高まるにつれ、様々なアプリケーションにおいて、正確に部分レベルのダイナミクスをモデル化することがますます重要になっている。
Puppet-Masterのような既存のアプローチは、2Dビデオ表現の制限と処理時間の遅いために現実の用途では実用的ではない大規模なトレーニング済みビデオ拡散モデルに依存している。
これらの課題を克服するために、静的物体の多視点画像から外観、幾何学、部分レベルの動きを同時にモデル化する新しい4D再構成フレームワークPartRMを提案する。
PartRMは大規模な3次元ガウス復元モデルを構築し、静的物体の外観と幾何学に関する広範な知識を活用している。
4Dにおけるデータ不足に対処するために、PartDrag-4Dデータセットを導入し、20,000以上の状態にわたる部分レベルのダイナミクスを多視点で観察する。
我々は,様々な粒度でダイナミックスを捉えるマルチスケールのドラッグ埋め込みモジュールを用いて,相互作用条件の理解を深める。
微調整中の破滅的な忘れを防止するため,動作学習と外見学習を連続的に重視する2段階の訓練プロセスを実装した。
実験結果から,PartRMはロボット工学の操作作業に応用できる部分レベルの動作学習において,新たな最先端技術を確立していることがわかった。
私たちのコード、データ、モデルは、将来の研究を促進するために公開されています。
関連論文リスト
- Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
本研究では,事前学習した映像生成モデルを制御可能な世界シミュレータに変換するための動的世界シミュレーション(DWS)を提案する。
条件付き動作と生成した視覚的変化の正確なアライメントを実現するために,軽量で普遍的な動作条件付きモジュールを導入する。
実験により、DWSは拡散モデルと自己回帰変換モデルの両方に汎用的に適用可能であることが示された。
論文 参考訳(メタデータ) (2025-02-10T14:49:09Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
エゴガウスアン(EgoGaussian)は、3Dシーンを同時に再構築し、RGBエゴセントリックな入力のみから3Dオブジェクトの動きを動的に追跡する手法である。
動的オブジェクトと背景再構築の品質の両面で,最先端技術と比較して大きな改善が見られた。
論文 参考訳(メタデータ) (2024-06-28T10:39:36Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
本稿では,視覚制御タスクの学習を効率的に行うために,Wild 動画を多用した事前学習型世界モデルの課題について検討する。
本稿では、コンテキストと動的モデリングを明確に分離したContextualized World Models(ContextWM)を紹介する。
実験により,ContextWMを内蔵したWildビデオ事前学習は,モデルベース強化学習のサンプル効率を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-05-29T14:29:12Z) - An end-to-end multi-scale network for action prediction in videos [31.967024536359908]
エンド・ツー・エンド方式で部分的なビデオのアクション・クラスを予測するための効率的なマルチスケール・ネットワークを開発した。
我々のE2EMSNetは、BIT、HMDB51、UCF101という3つの挑戦的なデータセットで評価されている。
論文 参考訳(メタデータ) (2022-12-31T06:58:41Z) - Learning Robust Dynamics through Variational Sparse Gating [18.476155786474358]
多くのオブジェクトを持つ環境では、少数のオブジェクトが同時に動いたり相互作用したりしているのが普通です。
本稿では,このスパース相互作用の帰納バイアスを,画素から学習した世界モデルの潜在ダイナミクスに統合する。
論文 参考訳(メタデータ) (2022-10-21T02:56:51Z) - Conditional Object-Centric Learning from Video [34.012087337046005]
我々は、リアルな合成シーンのための光の流れを予測するために、スロット注意を逐次拡張する。
我々は,このモデルの初期状態が,第1フレーム内の物体の質量の中心など,小さなヒントの集合に条件付けるだけで,インスタンスのセグメンテーションを大幅に改善できることを示す。
これらの利点は、トレーニング分布を超えて、新しいオブジェクト、新しいバックグラウンド、より長いビデオシーケンスに一般化される。
論文 参考訳(メタデータ) (2021-11-24T16:10:46Z) - Learning Local Recurrent Models for Human Mesh Recovery [50.85467243778406]
本稿では,人間のメッシュを標準的な骨格モデルに従って複数の局所的に分割するビデオメッシュ復元手法を提案する。
次に、各局所部分の力学を別個のリカレントモデルでモデル化し、各モデルは、人体の既知の運動構造に基づいて適切に条件付けする。
これにより、構造的インフォームドな局所的再帰学習アーキテクチャが実現され、アノテーションを使ってエンドツーエンドでトレーニングすることができる。
論文 参考訳(メタデータ) (2021-07-27T14:30:33Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
エージェントが世界と対話することを学ぶための鍵となる課題は、オブジェクトの物理的性質を推論することである。
本研究では,ラベルのない3次元点群と画像から直接,ロボットのインタラクションのダイナミクスをモデル化するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-02T11:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。