OmniNova:A General Multimodal Agent Framework
- URL: http://arxiv.org/abs/2503.20028v1
- Date: Tue, 25 Mar 2025 19:21:01 GMT
- Title: OmniNova:A General Multimodal Agent Framework
- Authors: Pengfei Du,
- Abstract summary: Large Language Models (LLMs) with specialized tools presents new opportunities for intelligent automation systems.<n>We present OmniNova, a modular multi-agent automation framework that combines language models with specialized tools such as web search, crawling, and code execution capabilities.
- Score: 0.5439020425819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Large Language Models (LLMs) with specialized tools presents new opportunities for intelligent automation systems. However, orchestrating multiple LLM-driven agents to tackle complex tasks remains challenging due to coordination difficulties, inefficient resource utilization, and inconsistent information flow. We present OmniNova, a modular multi-agent automation framework that combines language models with specialized tools such as web search, crawling, and code execution capabilities. OmniNova introduces three key innovations: (1) a hierarchical multi-agent architecture with distinct coordinator, planner, supervisor, and specialist agents; (2) a dynamic task routing mechanism that optimizes agent deployment based on task complexity; and (3) a multi-layered LLM integration system that allocates appropriate models to different cognitive requirements. Our evaluations across 50 complex tasks in research, data analysis, and web interaction domains demonstrate that OmniNova outperforms existing frameworks in task completion rate (87\% vs. baseline 62\%), efficiency (41\% reduced token usage), and result quality (human evaluation score of 4.2/5 vs. baseline 3.1/5). We contribute both a theoretical framework for multi-agent system design and an open-source implementation that advances the state-of-the-art in LLM-based automation systems.
Related papers
- DynTaskMAS: A Dynamic Task Graph-driven Framework for Asynchronous and Parallel LLM-based Multi-Agent Systems [2.6353853440763113]
This paper introduces DynTaskMAS, a novel framework that orchestrates asynchronous and parallel operations in Multi-Agent Systems.<n>The framework features four key innovations: (1) a Dynamic Task Graph Generator that decomposes complex tasks while maintaining logical dependencies, (2) an Asynchronous Parallel Execution Engine that optimize resource utilization through efficient task scheduling, and (3) a Semantic-Aware Context Management System that enables efficient information sharing among agents.
arXiv Detail & Related papers (2025-03-10T06:16:10Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.<n>Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.<n>We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - Nexus: A Lightweight and Scalable Multi-Agent Framework for Complex Tasks Automation [0.6560382312183772]
We introduce Nexus, a Python framework designed to easily build and manage Multi-Agent Systems (MASs)<n>We show that Nexus-driven MASs achieve a 99% pass rate on HumanEval and a flawless 100% on VerilogEval-Human.<n>These architectures display robust proficiency in complex reasoning and mathematical problem solving.
arXiv Detail & Related papers (2025-02-26T12:37:47Z) - AutoAgent: A Fully-Automated and Zero-Code Framework for LLM Agents [4.57755315319748]
Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making.<n>These frameworks predominantly serve developers with extensive technical expertise.<n>Only 0.03 % of the global population possesses the necessary programming skills.
arXiv Detail & Related papers (2025-02-09T16:53:56Z) - MaCTG: Multi-Agent Collaborative Thought Graph for Automatic Programming [10.461509044478278]
MaCTG (MultiAgent Collaborative Thought Graph) is a novel multi-agent framework that employs a dynamic graph structure.
It autonomously assigns agent roles based on programming requirements, dynamically refines task distribution, and systematically verifies and integrates project-level code.
MaCTG significantly reduced operational costs by 89.09% compared to existing multi-agent frameworks.
arXiv Detail & Related papers (2024-10-25T01:52:15Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend specialized agents to multi-agent systems.
We show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs' is a cutting-edge multi-agent framework designed to revolutionize the application of large language models.
Smurfs can enhance the model's ability to solve complex tasks at no additional cost.
arXiv Detail & Related papers (2024-05-09T17:49:04Z) - Do We Really Need a Complex Agent System? Distill Embodied Agent into a Single Model [15.558269067931374]
We propose STEVE-2, a hierarchical knowledge distillation framework for open-ended embodied tasks.
After distillation, embodied agents can complete complex, open-ended tasks without additional expert guidance.
arXiv Detail & Related papers (2024-04-06T12:51:00Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
We propose automatically selecting a team of agents from candidates to collaborate in a dynamic communication structure toward different tasks and domains.
Specifically, we build a framework named Dynamic LLM-Powered Agent Network ($textDyLAN$) for LLM-powered agent collaboration.
We demonstrate that DyLAN outperforms strong baselines in code generation, decision-making, general reasoning, and arithmetic reasoning tasks with moderate computational cost.
arXiv Detail & Related papers (2023-10-03T16:05:48Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
Population-based multi-agent reinforcement learning (PB-MARL) refers to the series of methods nested with reinforcement learning (RL) algorithms.
We present MALib, a scalable and efficient computing framework for PB-MARL.
arXiv Detail & Related papers (2021-06-05T03:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.