Nexus: A Lightweight and Scalable Multi-Agent Framework for Complex Tasks Automation
- URL: http://arxiv.org/abs/2502.19091v1
- Date: Wed, 26 Feb 2025 12:37:47 GMT
- Title: Nexus: A Lightweight and Scalable Multi-Agent Framework for Complex Tasks Automation
- Authors: Humza Sami, Mubashir ul Islam, Samy Charas, Asav Gandhi, Pierre-Emmanuel Gaillardon, Valerio Tenace,
- Abstract summary: We introduce Nexus, a Python framework designed to easily build and manage Multi-Agent Systems (MASs)<n>We show that Nexus-driven MASs achieve a 99% pass rate on HumanEval and a flawless 100% on VerilogEval-Human.<n>These architectures display robust proficiency in complex reasoning and mathematical problem solving.
- Score: 0.6560382312183772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have substantially evolved Multi-Agent Systems (MASs) capabilities, enabling systems that not only automate tasks but also leverage near-human reasoning capabilities. To achieve this, LLM-based MASs need to be built around two critical principles: (i) a robust architecture that fully exploits LLM potential for specific tasks -- or related task sets -- and ($ii$) an effective methodology for equipping LLMs with the necessary capabilities to perform tasks and manage information efficiently. It goes without saying that a priori architectural designs can limit the scalability and domain adaptability of a given MAS. To address these challenges, in this paper we introduce Nexus: a lightweight Python framework designed to easily build and manage LLM-based MASs. Nexus introduces the following innovations: (i) a flexible multi-supervisor hierarchy, (ii) a simplified workflow design, and (iii) easy installation and open-source flexibility: Nexus can be installed via pip and is distributed under a permissive open-source license, allowing users to freely modify and extend its capabilities. Experimental results demonstrate that architectures built with Nexus exhibit state-of-the-art performance across diverse domains. In coding tasks, Nexus-driven MASs achieve a 99% pass rate on HumanEval and a flawless 100% on VerilogEval-Human, outperforming cutting-edge reasoning language models such as o3-mini and DeepSeek-R1. Moreover, these architectures display robust proficiency in complex reasoning and mathematical problem solving, achieving correct solutions for all randomly selected problems from the MATH dataset. In the realm of multi-objective optimization, Nexus-based architectures successfully address challenging timing closure tasks on designs from the VTR benchmark suite, while guaranteeing, on average, a power saving of nearly 30%.
Related papers
- OmniNova:A General Multimodal Agent Framework [0.5439020425819]
Large Language Models (LLMs) with specialized tools presents new opportunities for intelligent automation systems.
We present OmniNova, a modular multi-agent automation framework that combines language models with specialized tools such as web search, crawling, and code execution capabilities.
arXiv Detail & Related papers (2025-03-25T19:21:01Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - AgentPS: Agentic Process Supervision for Multi-modal Content Quality Assurance through Multi-round QA [9.450927573476822]
textitAgentPS is a novel framework that integrates Agentic Process Supervision into MLLMs via multi-round question answering during fine-tuning.<n>textitAgentPS demonstrates significant performance improvements over baseline MLLMs on proprietary TikTok datasets.
arXiv Detail & Related papers (2024-12-15T04:58:00Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLM is a novel framework designed to enable the instant derivation of large language models of arbitrary shapes.
AmoebaLLM significantly facilitates rapid deployment tailored to various platforms and applications.
arXiv Detail & Related papers (2024-11-15T22:02:28Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs' is a cutting-edge multi-agent framework designed to revolutionize the application of large language models.
Smurfs can enhance the model's ability to solve complex tasks at no additional cost.
arXiv Detail & Related papers (2024-05-09T17:49:04Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.