The Great Rift in Physics
- URL: http://arxiv.org/abs/2503.20067v1
- Date: Tue, 25 Mar 2025 21:01:46 GMT
- Title: The Great Rift in Physics
- Authors: Tim Maudlin,
- Abstract summary: Quantum theory predictions are incompatible with what Einstein wanted and built into General Relativity.<n>What has to give way is the Relativistic account of space-time structure and dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is commonly remarked that contemporary physics faces a challenge in reconciling quantum theory with Relativity, specifically General Relativity as a theory of gravity. But "challenge" is too mild a descriptor. Once one understands both what John Bell proved and what Einstein himself demanded of Relativity it becomes clear that the predictions of quantum theory, predictions that have been verified in the lab, are flatly incompatible with what Einstein wanted and built into General Relativity. There is not merely a tension but an incompatibility between the predictions of quantum theory and Relativity, and what has to give way is the Relativistic account of space-time structure and dynamics.
Related papers
- Einstein's 1927 gedanken experiment: how to complete it and measure the collapse time of a spatially spread photon [55.2480439325792]
Einstein discussed a gedanken experiment involving a single photon diffracted at an aperture and impinging on a screen.<n>He devised the example to support De Broglie's hypothesis of the pilot wave, and his own ideas on the incompleteness of the description of physical reality provided by Quantum Mechanics.<n> Partial realizations of Einstein's example have been performed, but the complete experiment has not been attempted (for good practical reasons) yet.
arXiv Detail & Related papers (2025-03-11T18:10:12Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Quantum Principle of Relativity and The Renormalizable Quantum Gravity [3.4447129363520337]
We develop a purely quantum theory based on the novel principle of relativity, termed the quantum principle of relativity.
We demonstrate that the essence of the principle of relativity can be naturally extended into the quantum realm, maintaining the identical structures of active and passive transformations.
arXiv Detail & Related papers (2023-12-04T10:49:56Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Testing the Braneworld Theory with Identical Particles [41.94295877935867]
braneworld scenarios postulate that the spacetime we effectively observe is actually a 4-dimensional brane embedded in a higher-dimensional spacetime.
We propose an experimental test that uses a pair of gravitationally interacting identical particles to determine the validity of certain braneworld models.
arXiv Detail & Related papers (2023-09-06T16:40:12Z) - Relativistic time dilation from a quantum mechanism [0.0]
We show that Lorentz transformations are obtained by a quantum mechanism.
We postulate this mechanism as the source of the phenomena of Special Relativity.
In this theory, the fundamental limit of the speed of light imposes a transparency condition for faster-than-light particles.
arXiv Detail & Related papers (2023-07-09T19:37:00Z) - Is spacetime quantum? [0.0]
We show a theorem stating that spacetime degrees of freedom and a quantum system violate a Bell inequality in a background Minkowski spacetime.
We argue that this implies that spacetime cannot be sensibly called classical if the assumptions in our theorem hold.
arXiv Detail & Related papers (2021-09-06T17:13:51Z) - Testing quantum theory with thought experiments [4.847980206213335]
How should one model systems that include agents who are themselves using quantum theory?
We give a state-of-the-art overview on quantum thought experiments involving observers.
arXiv Detail & Related papers (2021-06-09T18:08:23Z) - The arithmetic of uncertainty unifies quantum formalism and relativistic
spacetime [0.0]
Quantum theory deals with objects probabilistically at small scales, whereas relativity deals classically with motion in space and time.
We show here that the mathematical structures of quantum theory and of relativity follow together from pure thought.
One dimension of time and three dimensions of space are thus derived as the profound and inevitable framework of physics.
arXiv Detail & Related papers (2020-12-19T20:40:27Z) - There is only one time [110.83289076967895]
We draw a picture of physical systems that allows us to recognize what is this thing called "time"
We derive the Schr"odinger equation in the first case, and the Hamilton equations of motion in the second one.
arXiv Detail & Related papers (2020-06-22T09:54:46Z) - Quantum resource covariance [0.0]
Since the dawn of quantum mechanics there is no consensus on what the theory is all about.
We construct a theoretical framework within which a given combination of quantum resources is shown to be a Galilean invariant.
We show that the notion of physical reality implied by quantum mechanics is not absolute.
arXiv Detail & Related papers (2020-05-19T17:34:11Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Precision Gravity Tests and the Einstein Equivalence Principle [0.0]
General Relativity is today the best theory of gravity addressing a wide range of phenomena.
The Equivalence Principle represents the core of the Einstein theory of gravity.
Recent progress on relativistic theories of gravity have to take into account new issues like Dark Matter and Dark Energy.
arXiv Detail & Related papers (2020-02-07T17:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.