論文の概要: Traversing Distortion-Perception Tradeoff using a Single Score-Based Generative Model
- arxiv url: http://arxiv.org/abs/2503.20297v2
- Date: Thu, 03 Apr 2025 07:46:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:51:12.676798
- Title: Traversing Distortion-Perception Tradeoff using a Single Score-Based Generative Model
- Title(参考訳): 単一スコアベース生成モデルを用いた歪み知覚トレードオフのトラバース
- Authors: Yuhan Wang, Suzhi Bi, Ying-Jun Angela Zhang, Xiaojun Yuan,
- Abstract要約: 歪み知覚トレードオフは、歪みメトリクスと知覚品質の根本的な矛盾を明らかにします。
本稿では,1つのスコアネットワークがDPトレードオフを効果的かつ柔軟に越えられることを示す。
- 参考スコア(独自算出の注目度): 35.91741991271154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The distortion-perception (DP) tradeoff reveals a fundamental conflict between distortion metrics (e.g., MSE and PSNR) and perceptual quality. Recent research has increasingly concentrated on evaluating denoising algorithms within the DP framework. However, existing algorithms either prioritize perceptual quality by sacrificing acceptable distortion, or focus on minimizing MSE for faithful restoration. When the goal shifts or noisy measurements vary, adapting to different points on the DP plane needs retraining or even re-designing the model. Inspired by recent advances in solving inverse problems using score-based generative models, we explore the potential of flexibly and optimally traversing DP tradeoffs using a single pre-trained score-based model. Specifically, we introduce a variance-scaled reverse diffusion process and theoretically characterize the marginal distribution. We then prove that the proposed sample process is an optimal solution to the DP tradeoff for conditional Gaussian distribution. Experimental results on two-dimensional and image datasets illustrate that a single score network can effectively and flexibly traverse the DP tradeoff for general denoising problems.
- Abstract(参考訳): 歪み知覚(DP)トレードオフは、歪み指標(例えば、MSEとPSNR)と知覚品質の根本的な矛盾を明らかにする。
最近の研究は、DPフレームワーク内でのデノナイジングアルゴリズムの評価に集中している。
しかし、既存のアルゴリズムは許容できる歪みを犠牲にして知覚品質を優先するか、MSEを最小化することに集中するかのいずれかである。
目標のシフトやノイズの測定が変わると、DP平面上の異なる点に適応するためには、モデルの再訓練や再設計さえ必要となる。
スコアベース生成モデルを用いた逆問題解決の最近の進歩にインスパイアされ、単一の事前学習されたスコアベースモデルを用いてDPトレードオフを柔軟かつ最適にトラバースする可能性を探究する。
具体的には、分散スケール逆拡散過程を導入し、理論的に限界分布を特徴づける。
次に,提案法は条件付きガウス分布に対するDPトレードオフの最適解であることを示す。
2次元および画像データセットによる実験結果から、単一スコアネットワークは一般の騒音問題に対するDPトレードオフを効果的かつ柔軟に横切ることができることが示された。
関連論文リスト
- Score-Based Turbo Message Passing for Plug-and-Play Compressive Image Recovery [24.60447255507278]
オフ・ザ・シェルフのイメージ・デノイザは概して、一般的なまたは手作りの先駆者に依存している。
我々は, スコアベース最小二乗誤差(MMSE)デノイザを統合した, 圧縮画像復元のためのメッセージパッシングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-28T04:30:58Z) - Reconciling Stochastic and Deterministic Strategies for Zero-shot Image Restoration using Diffusion Model in Dual [47.141811103506036]
我々はDualにおけるReconciling Model(RDMD)と呼ばれる新しいゼロショット画像復元手法を提案する。
RDMDはbftextsingle事前学習拡散モデルのみを使用してテキスト2正規化器を構成する。
提案手法は,FFHQ と ImageNet の両方のデータセットに対する既存手法と比較して,優れた結果が得られる。
論文 参考訳(メタデータ) (2025-03-03T08:25:22Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
科学と工学において、ゴールは、ある画像のモダリティを記述する既知のフォワードモデルから収集された少数の測定値から未知の画像を推測することである。
モチベートされたスコアベース拡散モデルはその経験的成功により、画像再構成に先立って模範の印象的な候補として現れた。
論文 参考訳(メタデータ) (2024-03-25T15:58:26Z) - Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors [21.0128625037708]
提案手法は, 分割・分散型後方サンプリング方式である。
これにより、再トレーニングを必要とせずに、現在のテクニックに関連する近似誤差を低減することができる。
ベイズ逆問題に対するアプローチの汎用性と有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T01:47:24Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
既存のカスタマイズ方法は、事前訓練された拡散確率モデルをユーザが提供する概念に合わせるために、複数の参照例にアクセスする必要がある。
本論文は、DPMカスタマイズの課題として、生成コンテンツ上で定義された差別化可能な指標が唯一利用可能な監督基準である場合に解決することを目的とする。
本稿では,拡散モデルから新しいサンプルを初めて生成するAdjointDPMを提案する。
次に、随伴感度法を用いて、損失の勾配をモデルのパラメータにバックプロパゲートする。
論文 参考訳(メタデータ) (2023-07-20T09:06:21Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems [14.809545109705256]
本稿では、簡単な閉形式近似を確率スコアに提案することにより、高速で効果的な解を提案する。
拡散モデルとフローベースモデルの両方において、様々な雑音線形逆問題に対して広範な実験を行う。
提案手法は,全ての基本手法よりもはるかに高速でありながら,高い競争力あるいはより優れた復元性能を示す。
論文 参考訳(メタデータ) (2022-11-20T01:09:49Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - The Deep Generative Decoder: MAP estimation of representations improves
modeling of single-cell RNA data [0.0]
モデルパラメータと表現を直接最大後部推定(MAP)により計算する単純な生成モデルを提案する。
このアプローチの利点は、その単純さと、同等のVAEよりもはるかに小さな次元の表現を提供する能力である。
論文 参考訳(メタデータ) (2021-10-13T12:17:46Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。