論文の概要: A Multilingual, Culture-First Approach to Addressing Misgendering in LLM Applications
- arxiv url: http://arxiv.org/abs/2503.20302v1
- Date: Wed, 26 Mar 2025 08:01:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:22:14.496205
- Title: A Multilingual, Culture-First Approach to Addressing Misgendering in LLM Applications
- Title(参考訳): LLMにおけるマルチリンガル・カルチャーファーストアプローチ
- Authors: Sunayana Sitaram, Adrian de Wynter, Isobel McCrum, Qilong Gu, Si-Qing Chen,
- Abstract要約: ミスジェンダー(英: missgendering)とは、性別によって、選択したアイデンティティと一致しない人を指す行為である。
英語に基づくアプローチは、その代名詞の使用など、誤解を避けるための明確なアプローチを持つ
- 参考スコア(独自算出の注目度): 12.5856659067182
- License:
- Abstract: Misgendering is the act of referring to someone by a gender that does not match their chosen identity. It marginalizes and undermines a person's sense of self, causing significant harm. English-based approaches have clear-cut approaches to avoiding misgendering, such as the use of the pronoun ``they''. However, other languages pose unique challenges due to both grammatical and cultural constructs. In this work we develop methodologies to assess and mitigate misgendering across 42 languages and dialects using a participatory-design approach to design effective and appropriate guardrails across all languages. We test these guardrails in a standard large language model-based application (meeting transcript summarization), where both the data generation and the annotation steps followed a human-in-the-loop approach. We find that the proposed guardrails are very effective in reducing misgendering rates across all languages in the summaries generated, and without incurring loss of quality. Our human-in-the-loop approach demonstrates a method to feasibly scale inclusive and responsible AI-based solutions across multiple languages and cultures.
- Abstract(参考訳): ミスジェンダー(英: missgendering)とは、性別によって、選択したアイデンティティと一致しない人を指す行為である。
相手の自己感覚を疎外し、弱体化させ、大きな危害を与える。
英語に基づくアプローチは、'they''という代名詞の使用など、誤解を避けるための明確なアプローチを持っている。
しかし、他の言語は文法的・文化的構成の両方のために独特な課題を生んでいる。
本研究は,42言語および方言間での誤認識を効果的かつ適切なガードレールを設計するための参加型設計手法を用いて評価・緩和する手法を開発する。
我々はこれらのガードレールを標準の大規模言語モデルベースアプリケーション(書き起こし要約)でテストし、そこではデータ生成とアノテーションのステップの両方がヒューマン・イン・ザ・ループのアプローチに従っている。
提案したガードレールは,生成した要約中のすべての言語間の誤認識率を低減し,品質を損なうことなく,極めて効果的であることがわかった。
私たちのHuman-in-the-loopアプローチは、包括的で責任あるAIベースのソリューションを、複数の言語や文化にわたって効果的にスケールする方法を示しています。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Tokenization Matters: Navigating Data-Scarce Tokenization for Gender Inclusive Language Technologies [75.85462924188076]
ジェンダー非包括的NLP研究は、ジェンダーバイナリ中心大言語モデル(LLM)の有害な制限を文書化している。
誤認識はByte-Pair(BPE)トークン化によって大きく影響されている。
本研究では,(1)代名詞の代名詞化パリティ,(2)代名詞間の一貫した代名詞化を強制する手法,および(2)既存のLLM代名詞の知識を活用して新代名詞の習熟度を向上させる手法を提案する。
論文 参考訳(メタデータ) (2023-12-19T01:28:46Z) - On Evaluating and Mitigating Gender Biases in Multilingual Settings [5.248564173595024]
複数言語設定におけるバイアスの評価と緩和に関する課題について検討する。
まず,事前学習したマスキング言語モデルにおいて,性別バイアスを評価するベンチマークを作成する。
我々は、様々なデバイアス法を英語以上に拡張し、SOTAの大規模多言語モデルの有効性を評価する。
論文 参考訳(メタデータ) (2023-07-04T06:23:04Z) - MISGENDERED: Limits of Large Language Models in Understanding Pronouns [46.276320374441056]
我々は、英語のジェンダーニュートラル代名詞を正しく活用する能力について、人気言語モデルの評価を行った。
提案するMISGENDEREDは,大言語モデルが好む代名詞を正しく活用する能力を評価するためのフレームワークである。
論文 参考訳(メタデータ) (2023-06-06T18:27:52Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
並列データが利用できない言語間のギャップを埋めることは、多言語NTTの性別バイアスに影響を与える。
本研究では, 言語に依存しない隠蔽表現が, ジェンダーの保存能力に及ぼす影響について検討した。
言語に依存しない表現は、ゼロショットモデルの男性バイアスを緩和し、ブリッジ言語におけるジェンダーインフレクションのレベルが増加し、話者関連性合意に対するより公平なジェンダー保存に関するゼロショット翻訳を超越することがわかった。
論文 参考訳(メタデータ) (2023-05-26T13:51:50Z) - Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation [28.471506840241602]
ジェンダーバイアスは機械翻訳において重要な問題であり、バイアス軽減技術の研究が進行中である。
本稿では,新しいアプローチに基づくバイアス緩和手法を提案する。
Gender-Aware Contrastive Learning, GACLは、文脈性情報を非明示性単語の表現にエンコードする。
論文 参考訳(メタデータ) (2023-05-23T12:53:39Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
トランスジェンダーとノンバイナリ(TGNB)の個人は、日常生活から差別や排除を不当に経験している。
オープン・ランゲージ・ジェネレーションにおいて,経験豊富なTGNB人物の疎外化を取り巻く社会的現実がいかに貢献し,持続するかを評価する。
我々はTGNB指向のコミュニティからキュレートされたテンプレートベースの実世界のテキストのデータセットであるTANGOを紹介する。
論文 参考訳(メタデータ) (2023-05-17T04:21:45Z) - INCLUSIFY: A benchmark and a model for gender-inclusive German [0.0]
ジェンダーインクルージョン言語はジェンダーインフレクションを持つ言語においてジェンダー平等を達成するために重要である。
ジェンダーを包含する言語の使用を支援するために、いくつかのツールが開発されている。
ベンチマークのためのデータセットと尺度を示し、これらのタスクを実装するモデルを示す。
論文 参考訳(メタデータ) (2022-12-05T19:37:48Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
私たちは、英語でジェンダーインクルージョンを促進する一般的な方法である特異点についてケーススタディを行います。
本研究では, 人為的データを持たない1%の単語誤り率で, ジェンダーニュートラルな英語を学習できるモデルについて述べる。
論文 参考訳(メタデータ) (2021-02-12T21:47:48Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。