Quantum Signatures of Chaos from Free Probability
- URL: http://arxiv.org/abs/2503.20338v2
- Date: Fri, 04 Apr 2025 08:36:31 GMT
- Title: Quantum Signatures of Chaos from Free Probability
- Authors: Hugo A. Camargo, Yichao Fu, Viktor Jahnke, Kuntal Pal, Keun-Young Kim,
- Abstract summary: We propose a definition of quantum chaos based on freeness and investigate its emergence in quantum many-body systems.<n>We show that fluctuations on top of the free convolution prediction follow universal Wigner-Dyson statistics, and discuss the connection with quantum chaos.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A classical dynamical system can be viewed as a probability space equipped with a measure-preserving time evolution map, admitting a purely algebraic formulation in terms of the algebra of bounded functions on the phase space. Similarly, a quantum dynamical system can be formulated using an algebra of bounded operators in a non-commutative probability space equipped with a time evolution map. Chaos, in either setting, can be characterized by statistical independence between observables at $ t = 0 $ and $ t \to \infty $, leading to the vanishing of cumulants involving these observables. In the quantum case, the notion of independence is replaced by free independence, which only emerges in the thermodynamic limit (asymptotic freeness). In this work, we propose a definition of quantum chaos based on asymptotic freeness and investigate its emergence in quantum many-body systems including the mixed-field Ising model with a random magnetic field, a higher spin version of the same model, and the SYK model. The hallmark of asymptotic freeness is the emergence of the free convolution prediction for the spectrum of operators of the form $ A(0) + B(t) $, implying the vanishing of all free cumulants between $A(0)$ and $B(t)$ in the thermodynamic limit for an infinite-temperature thermal state. We systematically investigate the spectral properties of $ A(0) + B(t) $ in the above-mentioned models, show that fluctuations on top of the free convolution prediction follow universal Wigner-Dyson statistics, and discuss the connection with quantum chaos. Finally, we argue that free probability theory provides a rigorous framework for understanding quantum chaos, offering a unifying perspective that connects many different manifestations of it.
Related papers
- Semiclassical Quantum Trajectories in the Monitored Lipkin-Meshkov-Glick Model [41.94295877935867]
We investigate the dynamics of the Lipkin-Meshkov-Glick model, composed of $N$ all-to-all interacting spins $1/2$, under a weak external monitoring.
We derive a set of semiclassical equations describing the evolution of the expectation values of global spin observables, which become exact in the thermodynamic limit.
The transition is not affected by post-selection issues, as it is already visible at the level of ensemble averages.
arXiv Detail & Related papers (2024-07-29T18:00:00Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Designs via Free Probability [0.0]
Unitary Designs have become a vital tool for investigating pseudorandomness since they approximate the statistics of the uniform Haar ensemble.
Despite their central role in quantum information, their relation to quantum chaotic evolution and in particular to the Eigenstate Thermalization Hypothesis (ETH) are still largely debated issues.
This work provides a bridge between the latter and $k$-designs through Free Probability theory.
arXiv Detail & Related papers (2023-08-11T15:49:40Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Non-commutative phase-space Lotka-Volterra dynamics: the quantum
analogue [0.0]
The Lotka-Volterra (LV) dynamics is investigated in the framework of the Weyl-Wigner (WW) quantum mechanics (QM)
The WW framework provides the ground for identifying how classical and quantum evolution coexist at different scales.
The generality of the framework developed here extends the boundaries of the understanding of quantum-like effects on competitive microscopical bio-systems.
arXiv Detail & Related papers (2022-06-14T11:23:04Z) - Coherent Fluctuations in Noisy Mesoscopic Systems, the Open Quantum SSEP
and Free Probability [0.0]
We show the dynamics of fluctuations of coherences in Q-SSEP have a natural interpretation as free cumulants.
We show how the link to free probability theory can be used to derive the time evolution of connected fluctuations of coherences.
arXiv Detail & Related papers (2022-04-25T14:19:01Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - The classical limit of Schr\"{o}dinger operators in the framework of
Berezin quantization and spontaneous symmetry breaking as emergent phenomenon [0.0]
A strict deformation quantization is analysed on the classical phase space $bR2n$.
The existence of this classical limit is in particular proved for ground states of a wide class of Schr"odinger operators.
The support of the classical state is included in certain orbits in $bR2n$ depending on the symmetry of the potential.
arXiv Detail & Related papers (2021-03-22T14:55:57Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Qubit regularization of asymptotic freedom [35.37983668316551]
Heisenberg-comb acts on a Hilbert space with only two qubits per spatial lattice site.
We show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units.
We argue that near-term quantum computers may suffice to demonstrate freedom.
arXiv Detail & Related papers (2020-12-03T18:41:07Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.