論文の概要: Knowledge-Based Multi-Agent Framework for Automated Software Architecture Design
- arxiv url: http://arxiv.org/abs/2503.20536v1
- Date: Wed, 26 Mar 2025 13:35:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:39.801103
- Title: Knowledge-Based Multi-Agent Framework for Automated Software Architecture Design
- Title(参考訳): ソフトウェアアーキテクチャ自動設計のための知識ベースマルチエージェントフレームワーク
- Authors: Yiran Zhang, Ruiyin Li, Peng Liang, Weisong Sun, Yang Liu,
- Abstract要約: 知識に基づくマルチエージェントアーキテクチャ設計(MAAD)フレームワークを構想する。
MAADはエージェントを使用して、従来のソフトウェアアーキテクチャ設計プロセスにおけるヒューマンロールをシミュレートする。
アプリケーションレベルのシステム開発を完全に自動化することを目指しています。
- 参考スコア(独自算出の注目度): 8.082263503892912
- License:
- Abstract: Architecture design is a critical step in software development. However, creating a high-quality architecture is often costly due to the significant need for human expertise and manual effort. Recently, agents built upon Large Language Models (LLMs) have achieved remarkable success in various software engineering tasks. Despite this progress, the use of agents to automate the architecture design process remains largely unexplored. To address this gap, we envision a Knowledge-based Multi-Agent Architecture Design (MAAD) framework. MAAD uses agents to simulate human roles in the traditional software architecture design process, thereby automating the design process. To empower these agents, MAAD incorporates knowledge extracted from three key sources: 1) existing system designs, 2) authoritative literature, and 3) architecture experts. By envisioning the MAAD framework, we aim to advance the full automation of application-level system development.
- Abstract(参考訳): アーキテクチャ設計はソフトウェア開発における重要なステップです。
しかし、人間の専門知識と手作業が必要なため、高品質なアーキテクチャを作成するのにしばしばコストがかかる。
近年,Large Language Models (LLM) 上に構築されたエージェントは,様々なソフトウェア工学タスクにおいて顕著な成功を収めている。
この進歩にもかかわらず、アーキテクチャ設計プロセスを自動化するためのエージェントの使用は、ほとんど探索されていない。
このギャップに対処するために、知識に基づくマルチエージェントアーキテクチャ設計(MAAD)フレームワークを構想する。
MAADはエージェントを使用して、従来のソフトウェアアーキテクチャ設計プロセスにおけるヒューマンロールをシミュレートし、設計プロセスを自動化する。
これらのエージェントを強化するために、MAADは3つの主要な情報源から抽出された知識を取り入れている。
1)既存のシステム設計。
2)権威文学、及び
3)建築の専門家。
MAADフレームワークを構想することで、アプリケーションレベルのシステム開発を完全に自動化することを目指している。
関連論文リスト
- Autonomous Deep Agent [0.7489814067742621]
Deep Agentは、複雑なマルチフェーズタスクを管理するために設計された高度な自律AIシステムである。
システムの基盤は階層型タスクDAGフレームワーク上に構築されています。
Deep Agentは、自己管理型AIシステムにおいて、新しいパラダイムを確立する。
論文 参考訳(メタデータ) (2025-02-10T21:46:54Z) - A quantitative framework for evaluating architectural patterns in ML systems [49.1574468325115]
本研究では,MLシステムにおけるアーキテクチャパターンの定量的評価のための枠組みを提案する。
コスト効率のよいCPUベースの推論のためのスケーラビリティとパフォーマンスメトリクスに注目します。
論文 参考訳(メタデータ) (2025-01-20T15:30:09Z) - From Requirements to Architecture: An AI-Based Journey to
Semi-Automatically Generate Software Architectures [2.4150871564195007]
本稿では,人工知能技術を用いた要件に基づくソフトウェアアーキテクチャ候補生成手法を提案する。
さらに、生成したアーキテクチャ候補の自動評価とトレードオフ分析を計画する。
論文 参考訳(メタデータ) (2024-01-25T10:56:58Z) - Towards Responsible Generative AI: A Reference Architecture for Designing Foundation Model based Agents [28.406492378232695]
ファンデーションモデルに基づくエージェントは、ファンデーションモデルの能力から自律性を引き出す。
本稿では,基礎モデルに基づくエージェントの設計におけるガイダンスとして機能するパターン指向参照アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-22T04:21:47Z) - Software Architecture Recovery with Information Fusion [14.537490019685384]
本稿では,完全に自動化されたアーキテクチャ復元手法であるSARIFを提案する。
依存関係、コードテキスト、フォルダ構造を含む3種類の包括的な情報が含まれている。
SARIFは従来の技術よりも36.1%正確である。
論文 参考訳(メタデータ) (2023-11-08T12:35:37Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - Architecture Knowledge Representation and Communication Industry Survey [0.0]
我々は、アーキテクチャ知識の現在の実践を理解し、将来ソフトウェアアーキテクチャの持続可能性に取り組むために持続可能性をどのように適用できるかを探求することを目的としている。
オランダの著名な銀行で働く45人の建築家から回答を得た。
論文 参考訳(メタデータ) (2023-09-20T18:17:16Z) - Enhancing Architecture Frameworks by Including Modern Stakeholders and their Views/Viewpoints [48.87872564630711]
データサイエンスと機械学習に関連する関心事、例えばデータサイエンティストやデータエンジニアの利害関係者は、まだ既存のアーキテクチャフレームワークには含まれていない。
10か国25以上の組織から61名の被験者を対象に調査を行った。
論文 参考訳(メタデータ) (2023-08-09T21:54:34Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - A Reference Software Architecture for Social Robots [64.86618385090416]
我々は社会ロボットが恩恵を受けるかもしれない一連の原則を提案する。
これらの原則は、社会ロボットのためのリファレンスソフトウェアアーキテクチャの設計の基礎にもなっている。
論文 参考訳(メタデータ) (2020-07-09T17:03:21Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。