論文の概要: TerraTorch: The Geospatial Foundation Models Toolkit
- arxiv url: http://arxiv.org/abs/2503.20563v1
- Date: Wed, 26 Mar 2025 13:59:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:31.075270
- Title: TerraTorch: The Geospatial Foundation Models Toolkit
- Title(参考訳): TerraTorch: Geospatial Foundation Models Toolkit
- Authors: Carlos Gomes, Benedikt Blumenstiel, Joao Lucas de Sousa Almeida, Pedro Henrique de Oliveira, Paolo Fraccaro, Francesc Marti Escofet, Daniela Szwarcman, Naomi Simumba, Romeo Kienzler, Bianca Zadrozny,
- Abstract要約: TerraTorchは、PyTorch Lightning上に構築されたGeospatial Foundation Models用の微調整およびベンチマークツールキットである。
ドメイン固有のデータモジュール、事前に定義されたタスク、およびさまざまなデコーダヘッドとバックボーンをペアにするモジュールモデルファクトリを統合する。
- 参考スコア(独自算出の注目度): 1.0673387795964326
- License:
- Abstract: TerraTorch is a fine-tuning and benchmarking toolkit for Geospatial Foundation Models built on PyTorch Lightning and tailored for satellite, weather, and climate data. It integrates domain-specific data modules, pre-defined tasks, and a modular model factory that pairs any backbone with diverse decoder heads. These components allow researchers and practitioners to fine-tune supported models in a no-code fashion by simply editing a training configuration. By consolidating best practices for model development and incorporating the automated hyperparameter optimization extension Iterate, TerraTorch reduces the expertise and time required to fine-tune or benchmark models on new Earth Observation use cases. Furthermore, TerraTorch directly integrates with GEO-Bench, allowing for systematic and reproducible benchmarking of Geospatial Foundation Models. TerraTorch is open sourced under Apache 2.0, available at https://github.com/IBM/terratorch, and can be installed via pip install terratorch.
- Abstract(参考訳): TerraTorchは、PyTorch Lightning上に構築されたGeospatial Foundation Models用の微調整およびベンチマークツールキットで、衛星、気象、気候データ用に調整されている。
ドメイン固有のデータモジュール、事前に定義されたタスク、およびさまざまなデコーダヘッドとバックボーンをペアにするモジュールモデルファクトリを統合する。
これらのコンポーネントによって、研究者や実践者は、トレーニング設定を単に編集することで、サポート対象モデルをコード無しで微調整できる。
モデル開発のためのベストプラクティスを統合し、自動ハイパーパラメータ最適化拡張を取り入れることで、TerraTorchは新しいアースオブザーバのユースケースでモデルやベンチマークを微調整するために必要な専門知識と時間を短縮する。
さらにTerraTorchはGEO-Benchと直接統合し、Geospatial Foundation Modelsの体系的で再現可能なベンチマークを可能にする。
TerraTorchはApache 2.0でオープンソース化されており、https://github.com/IBM/terratorchで入手できる。
関連論文リスト
- AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities [5.767156832161819]
本稿では,JEPAと分解能適応型空間エンコーダに基づくマルチモーダルモデルであるAnySatを提案する。
この統一アプローチの利点を示すために、5ドルのマルチモーダルデータセットのコレクションであるGeoPlexをコンパイルする。
次に、これらの多様なデータセット上で、単一の強力なモデルを同時にトレーニングします。
論文 参考訳(メタデータ) (2024-12-18T18:11:53Z) - SpectralEarth: Training Hyperspectral Foundation Models at Scale [47.93167977587301]
ハイパースペクトル基礎モデルの事前学習を目的とした大規模マルチ時間データセットであるSpectralEarthを紹介する。
我々は、最先端の自己教師付き学習(SSL)アルゴリズムを用いて、SpectralEarthの一連の基礎モデルを事前訓練する。
我々は、土地被覆と収穫型マッピングのための4つの下流データセットを構築し、モデル評価のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2024-08-15T22:55:59Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPoseは、6Dオブジェクトのポーズ推定と追跡のための統合基盤モデルである。
我々のアプローチは、微調整なしで、テスト時に新しいオブジェクトに即座に適用できる。
論文 参考訳(メタデータ) (2023-12-13T18:28:09Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
5つの実世界のアプリケーション駆動データセットを含む新しいベンチマークを導入する。
本稿では,オープンワールドのための新しいオブジェクト検出モデル(FOMO)を提案する。
論文 参考訳(メタデータ) (2023-12-10T03:56:06Z) - FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the
Power of Heterogeneous Clients [50.13097183691517]
実世界のフェデレーションシナリオでは、様々な計算と通信資源を持つ多種多様なクライアントが存在することが多い。
本稿では,新しいフェデレーションチューニングアルゴリズムであるFedRAを提案する。
各通信ラウンドにおいて、FedRAはランダムにアロケーション行列を生成する。
アダプタを用いてアロケーション行列とファインチューンに基づいて、元のモデルから少数のレイヤを再編成する。
論文 参考訳(メタデータ) (2023-11-19T04:43:16Z) - SRAI: Towards Standardization of Geospatial AI [4.246621775040508]
Space Representations for Artificial Intelligence (srai)は、地理空間データを扱うためのPythonライブラリである。
このライブラリは地理空間データをダウンロードし、複数のアルゴリズムを使って特定の領域をマイクロリージョンに分割し、埋め込みモデルを訓練することができる。
Sraiは完全にオープンソースで、Apache 2.0ライセンス下で公開されている。
論文 参考訳(メタデータ) (2023-10-19T18:56:04Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Predicting the Geolocation of Tweets Using transformer models on Customized Data [17.55660062746406]
本研究は、ツイート/ユーザ位置情報予測タスクを解決することを目的としている。
提案手法は、自然言語処理のためのニューラルネットワークを実装し、位置を推定する。
提案されたモデルの範囲は、Twitterデータセットで微調整されている。
論文 参考訳(メタデータ) (2023-03-14T12:56:47Z) - FrOoDo: Framework for Out-of-Distribution Detection [1.3270838622986498]
FrOoDoは、デジタル病理学におけるアウト・オブ・ディストリビューション検出タスクのための使いやすいフレームワークである。
PyTorchの分類とセグメンテーションモデルで使用することができる。
論文 参考訳(メタデータ) (2022-08-01T16:11:21Z) - TorchGeo: deep learning with geospatial data [24.789143032205736]
我々はPyTorchディープラーニングエコシステムに地理空間データを統合するためのPythonライブラリであるTorchGeoを紹介した。
TorchGeoは、ベンチマークデータセット、一般的な地理空間データソースのための構成可能なデータセット、地理空間データのためのサンプル、マルチスペクトル画像で動作する変換を提供する。
トーチジオは、マルチスペクトル衛星画像のための事前訓練されたモデルを提供する最初の図書館でもある。
論文 参考訳(メタデータ) (2021-11-17T02:47:33Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
そこで本稿では,提案するハイブリッドバックボーンアーキテクチャを自動検索するOP-NASアルゴリズムを提案する。
提案するOP-NASの効率を向上させるために,探索アルゴリズムと候補モデルの評価を最適化する。
実験の結果、検索されたアーキテクチャ(AutoBERT-Zero)は、様々な下流タスクにおいてBERTとそのバリエーションの異なるモデル容量を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-07-15T16:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。