論文の概要: SRAI: Towards Standardization of Geospatial AI
- arxiv url: http://arxiv.org/abs/2310.13098v2
- Date: Mon, 23 Oct 2023 15:03:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 11:24:02.347149
- Title: SRAI: Towards Standardization of Geospatial AI
- Title(参考訳): SRAI:地理空間AIの標準化に向けて
- Authors: Piotr Gramacki, Kacper Le\'sniara, Kamil Raczycki, Szymon Wo\'zniak,
Marcin Przymus, Piotr Szyma\'nski
- Abstract要約: Space Representations for Artificial Intelligence (srai)は、地理空間データを扱うためのPythonライブラリである。
このライブラリは地理空間データをダウンロードし、複数のアルゴリズムを使って特定の領域をマイクロリージョンに分割し、埋め込みモデルを訓練することができる。
Sraiは完全にオープンソースで、Apache 2.0ライセンス下で公開されている。
- 参考スコア(独自算出の注目度): 4.246621775040508
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spatial Representations for Artificial Intelligence (srai) is a Python
library for working with geospatial data. The library can download geospatial
data, split a given area into micro-regions using multiple algorithms and train
an embedding model using various architectures. It includes baseline models as
well as more complex methods from published works. Those capabilities make it
possible to use srai in a complete pipeline for geospatial task solving. The
proposed library is the first step to standardize the geospatial AI domain
toolset. It is fully open-source and published under Apache 2.0 licence.
- Abstract(参考訳): spatial representations for artificial intelligence (srai)は、地理空間データを扱うためのpythonライブラリである。
ライブラリは地理空間データをダウンロードし、所定の領域を複数のアルゴリズムを使ってマイクロリージョンに分割し、様々なアーキテクチャを使って埋め込みモデルをトレーニングすることができる。
ベースラインモデルだけでなく、出版物からより複雑な方法も含んでいる。
これらの機能により、地理空間的タスク解決のための完全なパイプラインでsraiを使用できる。
提案されたライブラリは、地理空間AIドメインツールセットを標準化する最初のステップである。
完全にオープンソースで、Apache 2.0ライセンス下で公開されている。
関連論文リスト
- Geo-FuB: A Method for Constructing an Operator-Function Knowledge Base for Geospatial Code Generation Tasks Using Large Language Models [0.5242869847419834]
本研究では,地理空間記述のセマンティクスを活用して,そのような知識基盤を構築するためのフレームワークを提案する。
サンプルの知識ベースであるGeo-FuBは154,075のGoogle Earth Engineスクリプトで構築されており、GitHubで公開されている。
論文 参考訳(メタデータ) (2024-10-28T12:50:27Z) - An Autonomous GIS Agent Framework for Geospatial Data Retrieval [0.0]
本研究では,必要な地理空間データを検索できる自律型GISエージェントフレームワークを提案する。
我々はQGISプラグイン(GeoData Retrieve Agent)とPythonプログラムとしてリリースされたフレームワークに基づいたプロトタイプエージェントを開発した。
実験の結果は、OpenStreetMap、行政境界、米国国勢調査局の人口統計データなど、さまざまなソースからデータを取得する能力を示している。
論文 参考訳(メタデータ) (2024-07-13T14:23:57Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - K2: A Foundation Language Model for Geoscience Knowledge Understanding
and Utilization [105.89544876731942]
大規模言語モデル(LLM)は自然言語処理の一般分野において大きな成功を収めている。
我々は、地球科学におけるLLM研究をさらに促進するために開発された一連の資源とともに、地球科学における最初のLLMであるK2を提示する。
論文 参考訳(メタデータ) (2023-06-08T09:29:05Z) - Mordecai 3: A Neural Geoparser and Event Geocoder [5.71097144710995]
Mordecai3は、新しいエンドツーエンドのテキストジオパーザとイベントジオロケーションシステムである。
新しいニューラルランキングモデルを使用して、文書から抽出された地名をGeonames gatteerへのエントリに解決する。
また、テキストで報告されたイベントと、報告される場所名とをリンクするイベントジオコーディングも行う。
論文 参考訳(メタデータ) (2023-03-23T21:10:04Z) - Predicting the Geolocation of Tweets Using transformer models on Customized Data [17.55660062746406]
本研究は、ツイート/ユーザ位置情報予測タスクを解決することを目的としている。
提案手法は、自然言語処理のためのニューラルネットワークを実装し、位置を推定する。
提案されたモデルの範囲は、Twitterデータセットで微調整されている。
論文 参考訳(メタデータ) (2023-03-14T12:56:47Z) - MGeo: Multi-Modal Geographic Pre-Training Method [49.78466122982627]
マルチモーダルジオグラフィック言語モデル(MGeo)を提案する。
MGeoはGCを新しいモダリティとして表現し、正確なクエリ-POIマッチングのためのマルチモーダル相関を完全に抽出することができる。
提案するマルチモーダル事前学習法は,汎用PTMのクエリ-POIマッチング能力を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-01-11T03:05:12Z) - DADApy: Distance-based Analysis of DAta-manifolds in Python [51.37841707191944]
DADApyは、高次元データの分析と特徴付けのためのピソンソフトウェアパッケージである。
固有次元と確率密度を推定し、密度に基づくクラスタリングを行い、異なる距離メトリクスを比較する方法を提供する。
論文 参考訳(メタデータ) (2022-05-04T08:41:59Z) - Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$ [118.04625413322827]
$texttt5x$と$texttseqio$は、言語モデルの構築とトレーニングのためのオープンソースのソフトウェアライブラリである。
これらのライブラリは、複数のテラバイトのトレーニングデータを持つデータセット上で、数十億のパラメータを持つモデルをトレーニングするために使用されています。
論文 参考訳(メタデータ) (2022-03-31T17:12:13Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
リモートセンシングデータのためのラベルの自動生成のためのビッグデータ処理パイプラインを評価する。
我々は,大規模データプラットフォームであるIBM PAIRSを用いて,密集都市部でそのようなラベルを動的に生成する。
論文 参考訳(メタデータ) (2022-01-31T20:02:22Z) - TorchGeo: deep learning with geospatial data [24.789143032205736]
我々はPyTorchディープラーニングエコシステムに地理空間データを統合するためのPythonライブラリであるTorchGeoを紹介した。
TorchGeoは、ベンチマークデータセット、一般的な地理空間データソースのための構成可能なデータセット、地理空間データのためのサンプル、マルチスペクトル画像で動作する変換を提供する。
トーチジオは、マルチスペクトル衛星画像のための事前訓練されたモデルを提供する最初の図書館でもある。
論文 参考訳(メタデータ) (2021-11-17T02:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。