State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2503.20613v1
- Date: Wed, 26 Mar 2025 15:00:07 GMT
- Title: State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
- Authors: Zongyuan Zhang, Tianyang Duan, Zheng Lin, Dong Huang, Zihan Fang, Zekai Sun, Ling Xiong, Hongbin Liang, Heming Cui, Yong Cui,
- Abstract summary: We propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion.<n>It incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution.<n>Experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
- Score: 11.807055530003899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
Related papers
- Robust Deep Reinforcement Learning in Robotics via Adaptive Gradient-Masked Adversarial Attacks [15.825229211045647]
We propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies.
AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
arXiv Detail & Related papers (2025-03-26T15:08:58Z) - Evaluating the Robustness of LiDAR Point Cloud Tracking Against Adversarial Attack [6.101494710781259]
We introduce a unified framework for conducting adversarial attacks within the context of 3D object tracking.
In addressing black-box attack scenarios, we introduce a novel transfer-based approach, the Target-aware Perturbation Generation (TAPG) algorithm.
Our experimental findings reveal a significant vulnerability in advanced tracking methods when subjected to both black-box and white-box attacks.
arXiv Detail & Related papers (2024-10-28T10:20:38Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
This paper explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM)
To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm.
arXiv Detail & Related papers (2024-10-26T15:04:04Z) - HUWSOD: Holistic Self-training for Unified Weakly Supervised Object Detection [66.42229859018775]
We introduce a unified, high-capacity weakly supervised object detection (WSOD) network called HUWSOD.
HUWSOD incorporates a self-supervised proposal generator and an autoencoder proposal generator with a multi-rate re-supervised pyramid to replace traditional object proposals.
Our findings indicate that randomly boxes, although significantly different from well-designed offline object proposals, are effective for WSOD training.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - On Minimizing Adversarial Counterfactual Error in Adversarial RL [18.044879441434432]
adversarial noise poses significant risks in safety-critical scenarios.<n>We introduce a novel objective called Adversarial Counterfactual Error (ACoE)<n>Our method significantly outperforms current state-of-the-art approaches for addressing adversarial RL challenges.
arXiv Detail & Related papers (2024-06-07T08:14:24Z) - Embodied Laser Attack:Leveraging Scene Priors to Achieve Agent-based Robust Non-contact Attacks [13.726534285661717]
This paper introduces the Embodied Laser Attack (ELA), a novel framework that dynamically tailors non-contact laser attacks.
For the perception module, ELA has innovatively developed a local perspective transformation network, based on the intrinsic prior knowledge of traffic scenes.
For the decision and control module, ELA trains an attack agent with data-driven reinforcement learning instead of adopting time-consuming algorithms.
arXiv Detail & Related papers (2023-12-15T06:16:17Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
Deepfakes, malicious visual contents created by generative models, pose an increasingly harmful threat to society.
To proactively mitigate deepfake damages, recent studies have employed adversarial perturbation to disrupt deepfake model outputs.
We propose a simple yet effective disruption method called Latent Ensemble ATtack (LEAT), which attacks the independent latent encoding process.
arXiv Detail & Related papers (2023-07-04T07:00:37Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Robust Reinforcement Learning using Adversarial Populations [118.73193330231163]
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness.
We show that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary.
We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training.
arXiv Detail & Related papers (2020-08-04T20:57:32Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises.
Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions.
We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, is ineffective for many RL tasks.
arXiv Detail & Related papers (2020-03-19T17:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.