Robust Deep Reinforcement Learning in Robotics via Adaptive Gradient-Masked Adversarial Attacks
- URL: http://arxiv.org/abs/2503.20844v1
- Date: Wed, 26 Mar 2025 15:08:58 GMT
- Title: Robust Deep Reinforcement Learning in Robotics via Adaptive Gradient-Masked Adversarial Attacks
- Authors: Zongyuan Zhang, Tianyang Duan, Zheng Lin, Dong Huang, Zihan Fang, Zekai Sun, Ling Xiong, Hongbin Liang, Heming Cui, Yong Cui, Yue Gao,
- Abstract summary: We propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies.<n>AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
- Score: 15.825229211045647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) has emerged as a promising approach for robotic control, but its realworld deployment remains challenging due to its vulnerability to environmental perturbations. Existing white-box adversarial attack methods, adapted from supervised learning, fail to effectively target DRL agents as they overlook temporal dynamics and indiscriminately perturb all state dimensions, limiting their impact on long-term rewards. To address these challenges, we propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies. AGMR selectively allocates perturbations to the most impactful state features and incorporates a dynamic adjustment mechanism to balance exploration and exploitation during training. Extensive experiments demonstrate that AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
Related papers
- State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning [11.807055530003899]
We propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion.<n>It incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution.<n>Experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
arXiv Detail & Related papers (2025-03-26T15:00:07Z) - A Novel Bifurcation Method for Observation Perturbation Attacks on Reinforcement Learning Agents: Load Altering Attacks on a Cyber Physical Power System [1.7887848708497243]
This work proposes a novel attack technique for continuous control using Group Difference Logits loss with a bifurcation layer.
We demonstrate the impacts of powerful gradient-based attacks in a realistic smart energy environment.
arXiv Detail & Related papers (2024-07-06T20:55:24Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
We create high-quality adversarial examples by incorporating multi-granular perturbations.
We transform the multi-granular attack into a sequential decision-making process.
Our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
arXiv Detail & Related papers (2024-04-02T02:08:29Z) - Robust Deep Reinforcement Learning Through Adversarial Attacks and Training : A Survey [8.1138182541639]
Deep Reinforcement Learning (DRL) is a subfield of machine learning for training autonomous agents that take sequential actions across complex environments.<n>It remains susceptible to minor condition variations, raising concerns about its reliability in real-world applications.<n>A way to improve robustness of DRL to unknown changes in the environmental conditions and possible perturbations is through Adversarial Training.
arXiv Detail & Related papers (2024-03-01T10:16:46Z) - Embodied Laser Attack:Leveraging Scene Priors to Achieve Agent-based Robust Non-contact Attacks [13.726534285661717]
This paper introduces the Embodied Laser Attack (ELA), a novel framework that dynamically tailors non-contact laser attacks.
For the perception module, ELA has innovatively developed a local perspective transformation network, based on the intrinsic prior knowledge of traffic scenes.
For the decision and control module, ELA trains an attack agent with data-driven reinforcement learning instead of adopting time-consuming algorithms.
arXiv Detail & Related papers (2023-12-15T06:16:17Z) - Deep Reinforcement Learning for Cyber System Defense under Dynamic
Adversarial Uncertainties [5.78419291062552]
We propose a data-driven deep reinforcement learning framework to learn proactive, context-aware defense countermeasures.
A dynamic defense optimization problem is formulated with multiple protective postures against different types of adversaries.
arXiv Detail & Related papers (2023-02-03T08:33:33Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.