論文の概要: Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
- arxiv url: http://arxiv.org/abs/2503.20641v2
- Date: Fri, 23 May 2025 02:41:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 15:51:02.902524
- Title: Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
- Title(参考訳): モデルマージによる長短LLM推論の解錠
- Authors: Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen, Tao Zhong, Mingxuan Yuan,
- Abstract要約: Long-to-Short (L2S) 推論は推論深度と実用効率のバランスをとることを目的としている。
モデルマージは、System 1モデルの迅速な思考能力とSystem 2モデルの方法論的推論を統合することで、コスト効率が高く堅牢な代替手段を提供する。
実験の結果,モデルマージにより平均応答長を最大55%削減できることがわかった。
- 参考スコア(独自算出の注目度): 17.038807261969033
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The transition from System 1 to System 2 reasoning in large language models (LLMs) has marked significant advancements in handling complex tasks through deliberate, iterative thinking. However, this progress often comes at the cost of efficiency, as models tend to overthink, generating redundant reasoning steps without proportional improvements in output quality. Long-to-Short (L2S) reasoning has emerged as a promising solution to this challenge, aiming to balance reasoning depth with practical efficiency. While existing approaches, such as supervised fine-tuning (SFT), reinforcement learning (RL), and prompt engineering, have shown potential, they are either computationally expensive or unstable. Model merging, on the other hand, offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models. In this work, we present a comprehensive empirical study on model merging for L2S reasoning, exploring diverse methodologies, including task-vector-based, SVD-based, and activation-informed merging. Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance. We also identify a strong correlation between model scale and merging efficacy with extensive evaluations on 1.5B/7B/14B/32B models. Furthermore, we investigate the merged model's ability to self-critique and self-correct, as well as its adaptive response length based on task complexity. Our findings highlight model merging as a highly efficient and effective paradigm for L2S reasoning, offering a practical solution to the overthinking problem while maintaining the robustness of System 2 reasoning. This work can be found on Github https://github.com/hahahawu/Long-to-Short-via-Model-Merging.
- Abstract(参考訳): 大規模言語モデル(LLM)におけるシステム1からシステム2への推論への移行は、意図的かつ反復的な思考を通じて複雑なタスクを扱う上で大きな進歩を遂げた。
しかし、モデルが過度に考える傾向があり、出力品質を比例的に改善することなく冗長な推論ステップを生成するため、この進歩はしばしば効率のコストがかかる。
L2S(Long-to-Short)推論はこの課題に対する有望な解決策として現れており、推論深度と実用効率のバランスを図っている。
教師付き微調整(SFT)、強化学習(RL)、迅速な工学など、既存のアプローチは潜在的な可能性を示しているが、それらは計算コストが高いか不安定である。
一方、モデルマージは、System 1モデルの迅速な思考能力とSystem 2モデルの方法論的推論を統合することで、コスト効率が高く堅牢な代替手段を提供する。
本研究では,L2S推論のためのモデルマージに関する総合的研究を行い,タスクベクタベース,SVDベース,アクティベーションインフォームドマージなど多種多様な方法論を探索する。
実験の結果,モデルマージにより平均応答長を最大55%削減できることがわかった。
また, 1.5B/7B/14B/32Bモデルにおいて, モデルスケールとマージ有効性の間に強い相関関係が認められた。
さらに,統合モデルの自己批判能力と自己訂正能力,およびタスク複雑性に基づく適応応答長についても検討した。
本研究は,L2S推論におけるモデルマージを,システム2推論の堅牢性を維持しつつ,過度に考え抜かれた問題に対する実用的な解決策として,極めて効率的かつ効果的なパラダイムとして強調するものである。
この作業はGithub https://github.com/hahawu/Long-to-Short-via-Model-Mergingで見ることができる。
関連論文リスト
- Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models [49.598776427454176]
大規模共振モデル (LRM) は, 複雑なタスクの処理性能に優れていたため, 徐々に研究ホットスポットになりつつある。
しかし、これらのモデルが広く適用されたことにより、過度に考え直すという問題が徐々に顕在化していった。
モデル性能と推論能力を損なうことなく、推論経路の長さを短縮することを目的とした、様々な効率的な推論手法が提案されている。
論文 参考訳(メタデータ) (2025-08-04T06:54:31Z) - Enhancing Test-Time Scaling of Large Language Models with Hierarchical Retrieval-Augmented MCTS [19.394761422323853]
R2-LLMsは,新規で汎用的な階層型検索拡張推論フレームワークである。
R2-LLMsは、二重レベル検索ベースのインコンテキスト学習を統合することにより、推論時間一般化を強化する。
MATH500、GSM8K、OlympiadBench-TOデータセットに関する実証的な評価は、かなりの相対的な改善をもたらす。
論文 参考訳(メタデータ) (2025-07-08T00:41:12Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
大きな推論モデル(LRM)は、効率を阻害し、推論コストを膨らませる過剰な考えを示す。
LRM効率を向上させるための2つの軽量手法を提案する。
まず,学習不要なアクティベーションステアリング技術であるEfficic Steeringを導入する。
第2に,タスクの正確さと簡潔さを動的にバランスする強化学習フレームワークである自己回帰効率RLを開発する。
論文 参考訳(メタデータ) (2025-06-18T17:18:12Z) - Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router [9.580226379350737]
大規模言語モデルの問題解決能力を高めるためには,多段階推論が不可欠であることが証明されている。
しかし、多くの推論ステップは比較的単純であり、より効率的な小規模言語モデルで処理できる。
異種LLM間の協調推論を可能にする新しいフレームワークであるR2-Reasonerを提案する。
論文 参考訳(メタデータ) (2025-06-06T09:18:56Z) - TL;DR: Too Long, Do Re-weighting for Efficient LLM Reasoning Compression [55.37723860832064]
高度なデータアノテーションに依存しない動的比に基づくトレーニングパイプラインを提案する。
我々は、DeepSeek-R1-Distill-7BとDeepSeek-R1-Distill-14Bのモデルと、様々な難易度を持つ様々なベンチマークのモデルに対するアプローチを検証する。
論文 参考訳(メタデータ) (2025-06-03T09:23:41Z) - CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models [56.40065909544213]
大規模言語モデル(LLM)は、テスト時間スケーリングとして知られる、テスト時間計算の増加の恩恵を受ける。
しかし、推論最適化モデルはしばしば単純な問題さえ考え過ぎ、過度に冗長な出力を生成し、トークン効率を低下させる。
1)強化学習は前方推論の情報密度を減少させ,(2)後方連鎖学習は冗長でしばしば不要な検証ステップを促進する。
論文 参考訳(メタデータ) (2025-05-28T06:24:45Z) - Activation-Guided Consensus Merging for Large Language Models [25.68958388022476]
textbfActivation-Guided textbfConsensus textbfMerging(textbfACM)は,層固有のマージ係数を決定するプラグインとプレイのマージフレームワークである。
L2S(Long-to-Short)と一般的なマージタスクの実験は、ACMが全てのベースラインメソッドを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2025-05-20T07:04:01Z) - a1: Steep Test-time Scaling Law via Environment Augmented Generation [45.19240207975418]
Environment Augmented Generation (EAG) は、大規模言語モデルの推論をリアルタイムな環境フィードバックによって強化するフレームワークである。
EAGは、実行フィードバックと分岐探索の緊密な統合を通じて、意図的にバックトラックと戦略的再計画を可能にする。
A1-32Bモデルは、すべてのベンチマークで類似サイズのモデル間で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-04-20T12:55:59Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
より大規模なモデルではなく、推論時間の増加を活用する統合されたテスト時間計算スケーリングフレームワークを提案する。
当社のフレームワークには,内部TTCと外部TTCの2つの補完戦略が組み込まれている。
当社の textbf32B モデルは,DeepSeek R1 671B や OpenAI o1 など,はるかに大きなモデルを上回る 46% の課題解決率を実現している。
論文 参考訳(メタデータ) (2025-03-31T07:31:32Z) - Reinforced Model Merging [53.84354455400038]
本稿では,タスク統合に適した環境とエージェントを含むRMM(Reinforced Model Merging)という,革新的なフレームワークを提案する。
評価プロセス中にデータサブセットを利用することで、報酬フィードバックフェーズのボトルネックに対処し、RMMを最大100倍高速化する。
論文 参考訳(メタデータ) (2025-03-27T08:52:41Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な機能を示した。
OpenAI o1とDeepSeek-R1の最近の進歩は、System-2推論ドメインのパフォーマンスをさらに改善した。
論文 参考訳(メタデータ) (2025-03-20T17:59:38Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASONは、大規模言語モデルの推論能力を評価するための論理パズルベンチマークである。
状態チェックと状態遷移という2つのタスクを導入し、モデルが現在の状況をどのように評価するかを総合的に評価し、次の動きを計画する。
状態チェックと遷移データに基づいてトレーニングされたモデルでは、GSM8Kで最大5.1%の精度で数学推論が向上することを示す。
論文 参考訳(メタデータ) (2025-02-27T16:23:25Z) - Reasoning on a Spectrum: Aligning LLMs to System 1 and System 2 Thinking [0.9709444454602557]
大きな言語モデル(LLM)は印象的な推論能力を示すが、構造化されたステップバイステップの推論に依存しているため、限界が示される。
この作業は、ステップバイステップの推論が常に最適であるという仮定に挑戦し、タスク要求に基づいた推論戦略を適用する必要性を強調します。
論文 参考訳(メタデータ) (2025-02-18T02:58:37Z) - Fine, I'll Merge It Myself: A Multi-Fidelity Framework for Automated Model Merging [30.38047100067552]
推論機能は、大きな言語モデルにとって重要なフロンティアである。
機能を効率的に補完する1つの方法は、モデルマージである。
本稿では,マージ戦略のきめ細かい探索を可能にする自動モデルマージフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-06T12:47:25Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
大規模な言語モデルは、単純なコード生成タスクでは例外的なパフォーマンスを示しますが、複雑な問題に対処する上での課題に直面します。
本稿では,高品質な中間推論経路を自律的に生成するモデルであるSRA-MCTSを提案する。
我々の手法は、追加の監督を必要とせず、モデル自体を通して完全に機能する。
論文 参考訳(メタデータ) (2024-11-17T12:31:04Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。