Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
- URL: http://arxiv.org/abs/2503.20685v2
- Date: Thu, 27 Mar 2025 06:16:16 GMT
- Title: Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
- Authors: Yuhao Huang, Ao Chang, Haoran Dou, Xing Tao, Xinrui Zhou, Yan Cao, Ruobing Huang, Alejandro F Frangi, Lingyun Bao, Xin Yang, Dong Ni,
- Abstract summary: We introduce a novel learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation.<n>Multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask.<n>Our method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
- Score: 43.27869631032662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
Related papers
- Leveraging Labelled Data Knowledge: A Cooperative Rectification Learning Network for Semi-supervised 3D Medical Image Segmentation [27.94353306813293]
Semi-supervised 3D medical image segmentation aims to achieve accurate segmentation using few labelled data and numerous unlabelled data.<n>Main challenge in the design of semi-supervised learning methods is the effective use of the unlabelled data for training.<n>We introduce a new methodology to produce high-quality pseudo-labels for a consistency learning strategy.
arXiv Detail & Related papers (2025-02-17T05:29:50Z) - CLISC: Bridging clip and sam by enhanced cam for unsupervised brain tumor segmentation [6.438259303569066]
A vision-language model (i.e., CLIP) is employed to obtain image-level pseudo-labels for training a classification network.<n>A 3D segmentation network is trained with the SAM-derived pseudo-labels, where low-quality pseudo-labels are filtered out in a self-learning process.<n>Our approach obtained an average Dice Similarity Score (DSC) of 85.60%, outperforming five state-of-the-art unsupervised segmentation methods by more than 10 percentage points.
arXiv Detail & Related papers (2025-01-27T17:43:51Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - CSL: Class-Agnostic Structure-Constrained Learning for Segmentation
Including the Unseen [62.72636247006293]
Class-Agnostic Structure-Constrained Learning is a plug-in framework that can integrate with existing methods.
We propose soft assignment and mask split methodologies that enhance OOD object segmentation.
Empirical evaluations demonstrate CSL's prowess in boosting the performance of existing algorithms spanning OOD segmentation, ZS3, and DA segmentation.
arXiv Detail & Related papers (2023-12-09T11:06:18Z) - PA-Seg: Learning from Point Annotations for 3D Medical Image
Segmentation using Contextual Regularization and Cross Knowledge Distillation [14.412073730567137]
We propose to annotate a segmentation target with only seven points in 3D medical images, and design a two-stage weakly supervised learning framework PA-Seg.
In the first stage, we employ geodesic distance transform to expand the seed points to provide more supervision signal.
In the second stage, we use predictions obtained by the model pre-trained in the first stage as pseudo labels.
arXiv Detail & Related papers (2022-08-11T07:00:33Z) - Flip Learning: Erase to Segment [65.84901344260277]
Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation.
We propose a novel and general WSS framework called Flip Learning, which only needs the box annotation.
Our proposed approach achieves competitive performance and shows great potential to narrow the gap between fully-supervised and weakly-supervised learning.
arXiv Detail & Related papers (2021-08-02T09:56:10Z) - SAR: Scale-Aware Restoration Learning for 3D Tumor Segmentation [23.384259038420005]
We propose Scale-Aware Restoration (SAR) for 3D tumor segmentation.
A novel proxy task, i.e. scale discrimination, is formulated to pre-train the 3D neural network combined with the self-restoration task.
We demonstrate the effectiveness of our methods on two downstream tasks: i.e. Brain tumor segmentation, ii. Pancreas tumor segmentation.
arXiv Detail & Related papers (2020-10-13T01:23:17Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.